
MATLAB® Compiler™
User's Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ User's Guide
© COPYRIGHT 1995–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 1995 First printing
March 1997 Second printing
January 1998 Third printing Revised for Version 1.2
January 1999 Fourth printing Revised for Version 2.0 (Release 11)
September 2000 Fifth printing Revised for Version 2.1 (Release 12)
October 2001 Online only Revised for Version 2.3
July 2002 Sixth printing Revised for Version 3.0 (Release 13)
June 2004 Online only Revised for Version 4.0 (Release 14)
August 2004 Online only Revised for Version 4.0.1 (Release 14+)
October 2004 Online only Revised for Version 4.1 (Release 14SP1)
November 2004 Online only Revised for Version 4.1.1 (Release 14SP1+)
March 2005 Online only Revised for Version 4.2 (Release 14SP2)
September 2005 Online only Revised for Version 4.3 (Release 14SP3)
March 2006 Online only Revised for Version 4.4 (Release 2006a)
September 2006 Online only Revised for Version 4.5 (Release 2006b)
March 2007 Online only Revised for Version 4.6 (Release 2007a)
September 2007 Seventh printing Revised for Version 4.7 (Release 2007b)
March 2008 Online only Revised for Version 4.8 (Release 2008a)
October 2008 Online only Revised for Version 4.9 (Release 2008b)
March 2009 Online only Revised for Version 4.10 (Release 2009a)
September 2009 Online only Revised for Version 4.11 (Release 2009b)
March 2010 Online only Revised for Version 4.13 (Release 2010a)
September 2010 Online only Revised for Version 4.14 (Release 2010b)
April 2011 Online only Revised for Version 4.15 (Release 2011a)
September 2011 Online only Revised for Version 4.16 (Release 2011b)
March 2012 Online only Revised for Version 4.17 (Release 2012a)
September 2012 Online only Revised for Version 4.18 (Release 2012b)
March 2013 Online only Revised for Version 4.18.1 (Release 2013a)
September 2013 Online only Revised for Version 5.0 (Release 2013b)
March 2014 Online only Revised for Version 5.1 (Release 2014a)
October 2014 Online only Revised for Version 5.2 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)
September 2017 Online only Revised for Version 6.5 (Release R2017b)
March 2018 Online only Revised for Version 6.6 (Release R2018a)
September 2018 Online only Revised for Version 7.0 (Release R2018b)
March 2019 Online only Revised for Version 7.0.1 (Release R2019a)

Getting Started
1

MATLAB Compiler Product Description 1-2
Key Features . 1-2

Appropriate Tasks for MATLAB Compiler Products 1-3

Create Standalone Application from MATLAB 1-6
Create Function in MATLAB . 1-6
Create Standalone Application Using Application Compiler App

. 1-6
Install and Run MATLAB Generated Standalone Application

. 1-9

MATLAB Runtime Additional Info
2

Differences Between MATLAB and MATLAB Runtime 2-2

Performance Considerations and the MATLAB Runtime 2-3

Deploying Standalone Applications
3

Create Standalone Application from Command Line 3-2
Execute Compiler Projects with deploytool 3-2
Create Standalone Application with mcc 3-2
Run MATLAB Generated Standalone Application 3-3

v

Contents

Differences Between Compiler Apps and Command Line 3-4

Standalone Applications and Arguments 3-5
Overview . 3-5
Pass File Names, Numbers or Letters, Matrices, and MATLAB

Variables . 3-5
Run Standalone Applications that Use Arguments 3-6

Use Parallel Computing Toolbox in Deployed Applications . . . 3-9
Pass Parallel Computing Toolbox Profile at Run Time 3-9
Embed Parallel Computing Toolbox Profile 3-10

Integrate Application with Mac OS X Finder 3-12
Overview . 3-12
Installing the Mac Application Launcher Preference Pane . . . 3-12
Configuring the Installation Area . 3-12
Running the Application . 3-15

Files Generated After Packaging MATLAB Functions 3-16
for_redistribution Folder . 3-16
for_redistribution_files_only Folder . 3-16
for_testing Folder . 3-17

Customizing a Compiler Project
4

Customize an Application . 4-2
Customize the Installer . 4-2
Determine Data Type of Command-Line Input (For Packaging

Standalone Applications Only) . 4-5
Manage Required Files in Compiler Project 4-5
Sample Driver File Creation . 4-6
Specify Files to Install with Application 4-8
Additional Runtime Settings . 4-9

Manage Support Packages . 4-12
Using a Compiler App . 4-12
Using the Command Line . 4-13

vi Contents

MATLAB Code Deployment
5

How Does MATLAB Deploy Functions? 5-2

Dependency Analysis . 5-3
Function Dependency . 5-3
Data File Dependency . 5-3

MEX-Files, DLLs, or Shared Libraries . 5-5

Deployable Archive . 5-6
Additional Details . 5-8

Write Deployable MATLAB Code . 5-9
Packaged Applications Do Not Process MATLAB Files at Run

Time . 5-9
Do Not Rely on Changing Directory or Path to Control the

Execution of MATLAB Files . 5-10
Use isdeployed Functions To Execute Deployment-Specific Code

Paths . 5-10
Gradually Refactor Applications That Depend on Noncompilable

Functions . 5-11
Do Not Create or Use Nonconstant Static State Variables . . . 5-11
Get Proper Licenses for Toolbox Functionality You Want to

Deploy . 5-12

Calling Shared Libraries in Deployed Applications 5-13

MATLAB Data Files in Compiled Applications 5-15
Explicitly Including MATLAB Data files Using the %#function

Pragma . 5-15
Load and Save Functions . 5-15

vii

Standalone Application Creation
6

Dependency Analysis Function and User Interaction with the
Compilation Path . 6-2

addpath and rmpath in MATLAB . 6-2
Passing -I <directory> on the Command Line 6-2
Passing -N and -p <directory> on the Command Line 6-2

Deployment Process
7

About the MATLAB Runtime . 7-2
How is the MATLAB Runtime Different from MATLAB? 7-2
Performance Considerations and the MATLAB Runtime 7-3

Install and Configure the MATLAB Runtime 7-4
Download the MATLAB Runtime Installer from the Web 7-4
Install the MATLAB Runtime Interactively 7-4
Install the MATLAB Runtime Non-Interactively 7-6
Install the MATLAB Runtime without Administrator Rights . . . 7-8
Multiple MATLAB Runtime Versions on Single Machine 7-8
MATLAB and MATLAB Runtime on Same Machine 7-9
Uninstall MATLAB Runtime . 7-10

Run Applications Using a Network Installation of MATLAB
Runtime (Windows Only) . 7-11

MATLAB Runtime on Big Data Platforms 7-12
Cloudera . 7-12
Apache Ambari . 7-12
Azure HDInsight . 7-12

viii Contents

Work with the MATLAB Runtime
8

MATLAB Runtime Startup Options . 8-2
Set MATLAB Runtime Options . 8-2

Using the MATLAB Runtime User Data Interface 8-4
MATLAB Functions . 8-4
Set and Retrieve MATLAB Runtime Data for Shared Libraries

. 8-5

Display the MATLAB Runtime Initialization Messages 8-6
Best Practices . 8-7

Distributing Code to an End User
9

Distribute MATLAB Code Using the MATLAB Runtime 9-2
MATLAB Runtime . 9-2

Compiler Commands
10

Compiler Tips . 10-2
Deploying Applications That Call the Java Native Libraries

. 10-2
Using the VER Function in a Compiled MATLAB Application

. 10-2

ix

Standalone Applications
11

Deploying Standalone Applications . 11-2
Compiling the Application . 11-2
Testing the Application . 11-2
Deploying the Application . 11-3
Running the Application . 11-5

Troubleshooting
12

Testing Failures . 12-2

Investigate Deployed Application Failures 12-5

Limitations and Restrictions
13

Limitations . 13-2
Packaging MATLAB and Toolboxes . 13-2
Fixing Callback Problems: Missing Functions 13-2
Finding Missing Functions in a MATLAB File 13-4
Suppressing Warnings on the UNIX System 13-5
Cannot Use Graphics with the -nojvm Option 13-5
Cannot Create the Output File . 13-5
No MATLAB File Help for Packaged Functions 13-5
No MATLAB Runtime Versioning on Mac OS X 13-6
Older Neural Networks Not Deployable with MATLAB Compiler

. 13-6
Restrictions on Calling PRINTDLG with Multiple Arguments in

Packaged Mode . 13-6
Packaging a Function with which Does Not Search Current

Working Folder . 13-7
Restrictions on Using C++ SETDATA to Dynamically Resize an

mwArray . 13-7

x Contents

Functions not supported by MATLAB Compiler / MATLAB
Compiler SDK . 13-9

Reference Information
14

MATLAB Runtime Path Settings for Run-Time Deployment
. 14-2

General Path Guidelines . 14-2
Path for Java Applications on All Platforms 14-2
Windows Path for Run-Time Deployment 14-2
Linux Paths for Run-Time Deployment 14-3
OS X Paths for Run-Time Deployment 14-3

MATLAB Compiler Licensing . 14-4
Using MATLAB Compiler Licenses for Development 14-4

Deployment Product Terms . 14-6

Functions — Alphabetical List
15

MATLAB Compiler Quick Reference
A

mcc Command Arguments Listed Alphabetically A-2

mcc Command Line Arguments Grouped by Task A-5

Accepted File Types . A-10

xi

Using MATLAB Compiler on Mac or Linux
B

Problems Setting MATLAB Runtime Paths B-2
Running SETENV on Mac Failed . B-2
Mac Application Fails with “Library not loaded” or “Image not

found” . B-2

Apps
16

xii Contents

Getting Started

• “MATLAB Compiler Product Description” on page 1-2
• “Appropriate Tasks for MATLAB Compiler Products” on page 1-3
• “Create Standalone Application from MATLAB” on page 1-6

1

MATLAB Compiler Product Description
Build standalone executables and web apps from MATLAB programs

MATLAB Compiler lets you share MATLAB programs as standalone, MapReduce, and
Spark™ applications; web apps; and Microsoft® Excel® add-ins. You can deploy
applications and add-ins royalty-free using the MATLAB Runtime, which can be packaged
with the application or downloaded during installation. You can host MATLAB based web
apps using the MATLAB Web App Server provided with MATLAB Compiler.

You can package MATLAB programs into software components for integration with other
programming languages (with MATLAB Compiler SDK™). Large-scale deployment to
enterprise systems is supported through MATLAB Production Server™.

Key Features
• Sharing of MATLAB programs as standalone desktop or web applications
• Creation of Microsoft Excel add-ins
• Deployment of MATLAB code to Hadoop® and Spark
• Royalty-free distribution of applications without requiring users to install MATLAB
• Encryption of MATLAB code files to protect intellectual property

1 Getting Started

1-2

Appropriate Tasks for MATLAB Compiler Products
MATLAB Compiler generates standalone applications and Excel add-ins. MATLAB
Compiler SDK generates C/C++ shared libraries, deployable archives for use with
MATLAB Production Server, Java® packages, .NET assemblies, and COM components.

While MATLAB Compiler and MATLAB Compiler SDK let you run your MATLAB
application outside the MATLAB environment, it is not appropriate for all external tasks
you may want to perform. Some tasks require other products or MATLAB external
interfaces. Use the following table to determine if MATLAB Compiler or MATLAB
Compiler SDK is appropriate to your needs.

Task MATLAB
Compiler
and MATLAB
Compiler
SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Package
MATLAB
applications
for
deployment to
users who do
not have
MATLAB

■

Package
MATLAB
applications
for
deployment to
MATLAB
Production
Server

■

 Appropriate Tasks for MATLAB Compiler Products

1-3

Task MATLAB
Compiler
and MATLAB
Compiler
SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Build non-
MATLAB
applications
that include
MATLAB
functions

■

Generate
readable and
portable C/C+
+ code from
MATLAB code

 ■

Generate
MEX
functions
from MATLAB
code for code
verification
and
acceleration.

 ■

Integrate
MATLAB code
into Simulink

 ■

Generate
hardware
description
language
(HDL) from
MATLAB code

 ■

1 Getting Started

1-4

Task MATLAB
Compiler
and MATLAB
Compiler
SDK

MATLAB
Coder™

Simulink® HDL Coder™ MATLAB
External
Interfaces

Integrate
custom C
code into
MATLAB with
MEX files

 ■

Call MATLAB
from C and
Fortran
programs

 ■

Task MATLAB
Compiler and
MATLAB
Compiler SDK

MATLAB
Coder

Simulink HDL Coder MATLAB
External
Interfaces

Note Components generated by MATLAB Compiler and MATLAB Compiler SDK cannot
be used in the MATLAB environment.

For information on MATLAB Coder, see “MATLAB Coder”.

For information on Simulink, see “Simulink”.

For information on HDL Coder, see “HDL Coder”.

For information on MATLAB external interfaces, see “Calling MATLAB from Other
Languages” (MATLAB).

 Appropriate Tasks for MATLAB Compiler Products

1-5

Create Standalone Application from MATLAB
Supported platform: Windows®, Linux®, Mac

This example shows how to generate a standalone application from MATLAB. You package
the prewritten function that prints a magic square to the command prompt of a computer.
MATLAB Compiler produces an installer that installs both the standalone application and
all the required dependencies on a target system. The target system does not require a
licensed copy of MATLAB.

Create Function in MATLAB
In MATLAB, examine the MATLAB code that you want deployed as a standalone
application. For this example, open magicsquare.m located in matlabroot\extern
\examples\compiler.

function m = magicsquare(n)

if ischar(n)
 n=str2double(n);
end
m = magic(n)

At the MATLAB command prompt, enter magicsquare(5).

The output is:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Create Standalone Application Using Application Compiler App
1 On the MATLAB Apps tab, on the far right of the Apps section, click the arrow. In

Application Deployment, click Application Compiler.

1 Getting Started

1-6

Alternately, you can open the Application Compiler app by entering
applicationCompiler at the MATLAB prompt.

2 In the MATLAB Compiler project window, specify the main file of the MATLAB
application that you want to deploy.

a
In the Main File section of the toolstrip, click .

b In the Add Files window, browse to matlabroot\extern\examples
\compiler, and select magicsquare.m. Click Open.

The function magicsquare.m is added to the list of main files.
3 Decide whether to include the MATLAB Runtime installer in the generated

application by selecting one of the two options in the Packaging Options section:

• Runtime downloaded from web — Generates an installer that downloads the
MATLAB Runtime and installs it along with the deployed MATLAB application.

• Runtime included in package — Generates an installer that includes the
MATLAB Runtime installer.

Note For every release, the first time you select this option, you are prompted to
download the MATLAB Runtime installer. If you do not have internet access, you
should order a CD of the current version of MATLAB Runtime installer from
MathWorks®.

4 Customize the packaged application and its appearance:

 Create Standalone Application from MATLAB

1-7

• Application information — Editable information about the deployed application.
You can also customize the standalone applications appearance by changing the
application icon and splash screen. The generated installer uses this information
to populate the installed application metadata. See “Customize the Installer” on
page 4-2.

1 Getting Started

1-8

• Command line input type options — Selection of input data types for the
standalone application. For more information, see “Determine Data Type of
Command-Line Input (For Packaging Standalone Applications Only)” on page 4-
5.

• Additional installer options — Edit the default installation path for the
generated installer and selecting custom logo. See “Change the Installation Path”
on page 4-4 .

• Files required for your application to run — Additional files required by the
generated application to run. These files are included in the generated application
installer. See “Manage Required Files in Compiler Project” on page 4-5.

• Files installed for your end user — Files that are installed with your
application. These files include:

• Generated readme.txt
• Generated executable for the target platform

See “Specify Files to Install with Application” on page 4-8.
• Additional runtime settings — Platform-specific options for controlling the

generated executable. See “Additional Runtime Settings” on page 4-9.
5 To generate the packaged application, click Package.

In the Save Project dialog box, specify the location to save the project.
6 In the Package dialog box, verify that Open output folder when process

completes is selected.

When the packaging process is complete, examine the generated output.

• Three folders are generated in the target folder location: for_redistribution,
for_redistribution_files_only, and for_testing.

For further information about the files generated in these folders, see “Files
Generated After Packaging MATLAB Functions” on page 3-16.

• PackagingLog.txt — Log file generated by MATLAB Compiler.

Install and Run MATLAB Generated Standalone Application
1 To install the standalone application, in the for_redistribution folder, double-

click the MyAppInstaller_web executable.

 Create Standalone Application from MATLAB

1-9

Note The file extension varies depending on the platform on which the installer was
generated.

2 If you want to connect to the Internet using a proxy server, click Connection
Settings. Enter the proxy server settings in the provided window. Click OK.

To complete installation, follow the instructions on the user interface.

Note On Linux and Mac OS X, you do not have the option of adding a desktop
shortcut.

3 To run your standalone application:

a Open a terminal window.
b Navigate to the folder into which you installed the application.

If you accepted the default settings, you can find the folder in one of the
following locations:

Windows C:\Program Files
\magicsquare

Mac OS X /Applications/magicsquare
Linux /usr/magicsquare

c Run the application using one of the following commands:

Windows application\magicsquare 5

1 Getting Started

1-10

Mac OS X You must set the
DYLD_LIBRARY_PATH
environment variable in the
command window for the
standalone application to work as
follows:

$export DYLD_LIBRARY_PATH
= MCR_ROOT/v92/runtime/
maci64:MCR_ROOT/v92/sys/os
/maci64:MCR_ROOT/v92/bin/
maci64

Now run the application:
./magicsquare.app/Contents/
MacOS/magicsquare 5

Linux ./magicsquare 5

A 5-by-5 magic square is displayed in the console:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

See Also
applicationCompiler | deploytool | mcc

More About
• Application Compiler

 See Also

1-11

MATLAB Runtime Additional Info

2

Differences Between MATLAB and MATLAB Runtime
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the

version of the MATLAB Runtime associated with the version of MATLAB Compiler SDK
with which it was created. For example, if you compiled an application using version
6.3 (R2016b) of MATLAB Compiler, users who do not have MATLAB installed must
have version 9.1 of the MATLAB Runtime installed. Use mcrversion to return the
version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed.
To change them, you must first customize them within MATLAB.

2 MATLAB Runtime Additional Info

2-2

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use
the MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources
consumed by the MATLAB Runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are
threadsafe. This can impact performance.

 Performance Considerations and the MATLAB Runtime

2-3

Deploying Standalone Applications

3

Create Standalone Application from Command Line
You can package standalone applications at the MATLAB prompt or your system prompt
using either of these commands.

• deploytool invokes the Application Compiler app to execute a saved compiler
project.

• mcc invokes the MATLAB Compiler to create a deployable application at the command
prompt.

Execute Compiler Projects with deploytool
The deploytool command has two flags that invoke one of the compiler apps to package
an already existing project without opening a window.

• -build project_name — Invoke the correct compiler app to build the project but
not generate an installer.

• -package project_name — Invoke the correct compiler app to build the project and
generate an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Create Standalone Application with mcc
The mcc command invokes MATLAB Compiler to create a deployable application at the
command prompt and provides fine-level control while packaging the application. It does
not package the results in an installer.

To invoke the compiler to generate an application, use mcc with either the -m or the -e
flag. Both flags package a MATLAB function and generate a standalone executable. The -
m flag creates a standard executable that runs at a system command line. On Windows,
the -e flag generates an executable that does not open a command prompt when double-
clicked from Windows file explorer.

Use the following mcc options to package standalone applications.

3 Deploying Standalone Applications

3-2

Option Description
-W main -T link:exe Generate a standard executable equivalent

to using -m.
-W WinMain -T link:exe Generate an executable that does not open

a command prompt when double-clicked
from Windows file explorer. It is equivalent
to using -e.

-a filePath Add any files on the path to the generated
binaries.

-d outFolder Specify the folder for the packaged
applications.

-o fileName Specify the name of the generated
executable file.

Run MATLAB Generated Standalone Application
To run your standalone application:

1 Open a terminal window.
2 Navigate to the folder into which you packaged your standalone application.
3 Run the application using one of the following commands:

Windows magicsquare 5
Mac OS X You must set the DYLD_LIBRARY_PATH

environment variable in the command
window for the standalone application
to work as follows:

$export DYLD_LIBRARY_PATH =
MCR_ROOT/v92/runtime/
maci64:MCR_ROOT/v92/sys/os/
maci64:MCR_ROOT/v92/bin/maci64

Now run the application:
./magicsquare.app/Contents/
MacOS/magicsquare 5

Linux ./magicsquare 5

 Create Standalone Application from Command Line

3-3

A 5-by-5 magic square is displayed in the console:

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

Differences Between Compiler Apps and Command Line
You perform the same functions using either the compiler apps or the mcc command-line
interface. The interactive menus and dialog boxes used in the compiler apps build mcc
commands that are customized to your specification. As such, your MATLAB code is
processed the same way as if you were packaging it using mcc.

If you know the commands for the type of application you want to deploy and do not
require an installer, it is faster to execute mcc than go through the compiler app workflow.

Compiler app advantages include:

• You can perform related deployment tasks with a single intuitive interface.
• You can maintain related information in a convenient project file.
• Your project state persists between sessions.
• You can load previously stored compiler projects from a prepopulated menu.
• You can package applications for distribution.

See Also
deploytool | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-6

3 Deploying Standalone Applications

3-4

Standalone Applications and Arguments
In this section...
“Overview” on page 3-5
“Pass File Names, Numbers or Letters, Matrices, and MATLAB Variables” on page 3-5
“Run Standalone Applications that Use Arguments” on page 3-6

Overview
You can create a standalone to run the application without passing or retrieving any
arguments to or from it.

However, arguments can be passed to standalone applications created using MATLAB
Compiler in the same way that input arguments are passed to any console-based
application.

The following are example commands used to execute an application called filename
from Windows or Linux command prompt with different types of input arguments.

Pass File Names, Numbers or Letters, Matrices, and MATLAB
Variables
To Pass.... Use This Syntax.... Notes
A file named helpfile filename helpfile
Numbers or letters filename 1 2 3 a b c Do not use commas or other

separators between the
numbers and letters you
pass.

Matrices as input filename "[1 2 3]"
"[4 5 6]"

Place double quotes around
input arguments to denote a
blank space.

MATLAB variables for k=1:10
cmd = ['filename ',num2str(k)];
system(cmd);
end

To pass a MATLAB variable
to a program as input, you
must first convert it to a
character vector.

 Standalone Applications and Arguments

3-5

Run Standalone Applications that Use Arguments
You call a standalone application that uses arguments from MATLAB with any of the
following commands:

• SYSTEM
• DOS
• UNIX
• !

To pass the contents of a MATLAB variable to the program as an input, the variable must
first be converted to a character vector. For example:

Using SYSTEM, DOS, or UNIX

Specify the entire command to run the application as a character vector (including input
arguments). For example, passing the numbers and letters 1 2 3 a b c could be
executed using the SYSTEM command, as follows:

system('filename 1 2 3 a b c')

Using the ! (Bang) Operator

You can also use the ! (bang) operator, from within MATLAB, as follows:

!filename 1 2 3 a b c

When you use the ! (bang) operator, the remainder of the input line is interpreted as the
SYSTEM command, so it is not possible to use MATLAB variables.

Using a Windows System

To run a standalone application by double-clicking it, you create a batch file that calls the
standalone application with the specified input arguments. For example:

 rem This is main.bat file which calls
 rem filename.exe with input parameters

 filename "[1 2 3]" "[4 5 6]"
 @echo off
 pause

3 Deploying Standalone Applications

3-6

The last two lines of code in main.bat are added so that the window displaying your
output stays open until you press a key.

Once you save this file, you run your code with the arguments specified above by double
clicking the icon for main.bat.

Using a MATLAB File You Plan to Deploy

When running MATLAB files that use arguments that you also plan to deploy with
MATLAB Compiler, keep the following in mind:

• The input arguments you pass to your executable from a system prompt are received
as character vector input. Thus, if you expect the data in a different format (for
example, double), you must first convert the character vector input to the required
format in your MATLAB code. For example, you can use STR2NUM to convert the
character vector input to numerical data.

• You cannot return values from your standalone application to the user. The only way to
return values from compiled code is to either display it on the screen or store it in a
file.

In order to have data displayed back to the screen, do one of the following:

• Unsuppress the commands that yield your return data. Do not use semicolons to
unsuppress.

• Use the DISP command to display the variable value, then redirect the outputs to
other applications using redirects (the > operator) or pipes (||) on non-Windows
systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB File

Here are two ways to use a MATLAB file to take input arguments and display data to the
screen:

Method 1

function [x,y]=foo(z);

if ischar(z)
z=str2num(z);
else
z=z;
end

 Standalone Applications and Arguments

3-7

x=2*z
y=z^2;
disp(y)

Method 2

function [x,y]=foo(z);

if isdeployed
z=str2num(z);
end
x=2*z
y=z^2;
disp(y)

3 Deploying Standalone Applications

3-8

Use Parallel Computing Toolbox in Deployed
Applications

In this section...
“Pass Parallel Computing Toolbox Profile at Run Time” on page 3-9
“Embed Parallel Computing Toolbox Profile” on page 3-10

There are three ways to pass a cluster profile to a standalone application that uses the
Parallel Computing Toolbox:

1 Save the cluster profile to your MATLAB preferences.

The cluster profile will be automatically bundled with the generated application and
available to the Parallel Computing Toolbox code.

2 Pass the cluster profile location to the application at run time.

This option is useful if your application is run against different clusters.
3 Embed the cluster profile in the application.

Pass Parallel Computing Toolbox Profile at Run Time
You can deploy standalone application in a cluster environment using the Parallel
Computing Toolbox by passing the cluster profile to the compiled application at run time.

To deploy a standalone application written with Parallel Computing Toolbox:

1 In the Home tab, in the Environment section, select Parallel > Manage Cluster
Profiles.

2 In the Cluster Profile Manager dialog, select a profile, and in the Manage section,
click Export.

3 package the application.

Note If you are using the GPU feature of Parallel Computing Toolbox, you need to
add the PTX and CU files.

4 Write a shell script that calls the application using the -mcruserdata
ParallelProfile:profile flag.

myApp -mcruserdata ParallelProfile:C:\myprofile.settings

 Use Parallel Computing Toolbox in Deployed Applications

3-9

Use the full path name for the cluster profile file to specify profile.
5 Distribute the following files to application users:

• Generated installer
• Cluster profile
• Script that starts the application using the cluster profile

Users of the application must have access to the cluster specified in the profile.

Note As of R2012a, Parallel Configurations and MAT files have been replaced with
Parallel Profiles. For more information, see the release notes for the Deployment
products and Parallel Computing Toolbox.

To use existing MAT files and ensure backward compatibility with this change, issue a
command such as the following, in the above example:
pct_Compiled.exe 200 -mcruserdata
 ParallelProfile:C:\work9b\pctdeploytool\pct_Compiled\distrib\myconfig.mat

If you continue to use MAT files, remember to specify the full path to the MAT file.

Embed Parallel Computing Toolbox Profile
You can deploy standalone applications in a cluster environment using Parallel Computing
Toolbox by including the cluster profile with the compiled application.

You can use the default configuration from settings. The steps are similar to using a
standard compiled application with the following additional steps.

To deploy a standalone application written with Parallel Computing Toolbox:

1 Write a MATLAB function that uses setmcruserdata to load the cluster profile and
pass it to the MATLAB Runtime.

function run_parallel_funct
setmcruserdata('ParallelProfile', 'profile')
a = parallel_funct
end

2 In the Home tab, in the Environment section, select Parallel > Manage Cluster
Profiles.

3 In the Cluster Profile Manager dialog, select a profile, and in the Manage section,
click Export.

3 Deploying Standalone Applications

3-10

The saved cluster profile should match the profile value in setmcruserdata.
4 Package the application.

a Use the run_parallel_funct as the main file for the application.
b In the Files required for your application to run field of the Application

Compiler app, include the cluster profile and the MATLAB function for
parallel_funct.

If you are using the GPU feature of Parallel Computing Toolbox, you need to manually
add the PTX and CU files.

5 Distribute the generated installer to application users.

Users of the application must have access to the cluster specified in the profile.

 Use Parallel Computing Toolbox in Deployed Applications

3-11

Integrate Application with Mac OS X Finder

In this section...
“Overview” on page 3-12
“Installing the Mac Application Launcher Preference Pane” on page 3-12
“Configuring the Installation Area” on page 3-12
“Running the Application” on page 3-15

Overview
Mac graphical applications, opened through the Mac OS X finder utility, require
additional configuration if MATLAB software or the MATLAB Runtime are not installed in
default locations.

Installing the Mac Application Launcher Preference Pane
Install the Mac Application Launcher preference pane, which gives you the ability to
specify your installation area.

1 In the Mac OS X Finder, navigate to install_area/toolbox/compiler/maci64.
2 Double-click MW_App_Launch.prefPane.

Note The Mac Application Launcher manages only user preference settings. If you copy
the preferences defined in the launcher to the Mac System Preferences area, the
preferences are still manipulated in the User Preferences area.

Configuring the Installation Area
After you install the preference pane, you configure the installation area.

1 Open the preference pane by clicking the apple logo in the upper left corner of the
desktop.

2 Click System Preferences. The MW_App_Launch preference pane appears in the
Other area.

3 Deploying Standalone Applications

3-12

3 Define an installation area on your system by clicking Add Install Area.
4 Define the default installation path by browsing to it.
5 Click Open.

 Integrate Application with Mac OS X Finder

3-13

Modifying Your Installation Area

Occasionally, you remove an installation area, define additional areas, or change the order
of installation area precedence.

You can use the following options in MathWorks Application Launcher to modify your
installation area:

• Add Install Area — Define the path on your system where your applications install by
default.

• Remove Install Area — Remove a previously defined installation area.
• Move Up — After selecting an installation area, click to move the defined path up the

list. Binaries defined in installation areas at the top of the list have precedence over all
succeeding entries.

3 Deploying Standalone Applications

3-14

• Move Down — After selecting an installation area, click to move the defined path
down the list. Binaries defined in installation areas at the top of the list have
precedence over all succeeding entries.

• Apply — Save changes and exit MathWorks Application Launcher.
• Revert — Exit MathWorks Application Launcher without saving any changes.

Running the Application
When you create a Mac application, a Mac bundle is created. If the application does not
require standard input and output, open the application by clicking the bundle in the Mac
OS X Finder utility.

The location of the bundle is determined by whether you use mcc or
applicationCompiler to build the application:

• If you use applicationCompiler, the application bundle is placed in the
for_redistribution folder of the packaged application.

• If you use mcc, the application bundle is placed in the current working folder or in the
output folder, as specified by the mcc -d switch.

See Also
applicationCompiler | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-6

 See Also

3-15

Files Generated After Packaging MATLAB Functions
When the packaging process is complete, three folders are generated in the target folder
location: for_redistribution, for_redistribution_files_only, and
for_testing.

for_redistribution Folder
Distribute the for_redistribution folder to users who do not have MATLAB installed
on their machines.

The folder contains the file MyAppInstaller_web.exe that installs the application and
the MATLAB Runtime (if it is included in the application at the time of packaging). It
installs all the files that enable use of the packaged application on the target platform
with the target language in the target folder.

for_redistribution_files_only Folder
Distribute the for_redistribution_files_only folder to users who do not have
MATLAB installed on their machines. This folder contains specific files that enable use of
the packaged application on the target platform with the target language.

Standalone Applications

File Description
filename.exe Standalone executable file.
readme.txt Text file containing packaging information.
splash.png When the executable starts, the file is read

from the same folder where the executable
is located, and the splash screen is
displayed.

3 Deploying Standalone Applications

3-16

Excel Add-Ins

File Description
_install.bat The file that registers the generated dll

file.
filename.bas VBA module file that can be imported into a

VBA project.
filename.xla Excel add-in that can be added directly to

Excel. You do not need both .bas file
and .xla file, one of them is sufficient.

filename_2_0.dll The generated dll that needs to be
registered using mwregsvr.exe or
regsvr32.exe.

readme.txt Text file containing packaging information.

for_testing Folder
Use the files in this folder to test you application. The folder contains all the intermediate
and final artifacts such as binaries, JAR files, header files, and source files for a specific
target. The final artifacts created during the packaging process are the same files as
described in “for_redistribution_files_only Folder” on page 3-16. For further information
on how to test your packaged applications, see the following topics:

Target Link
Standalone Application “Install and Run MATLAB Generated

Standalone Application” on page 1-9
Excel Add-In “Execute Functions and Create Macros”

The intermediate artifacts generated are a result of packaging of the MATLAB files. They
are not significant to the user.

This folder also contains two text files. mccExcludedFiles.txt lists the files excluded
from packaged application, and requiredMCRProducts.txt, contains product IDs of
products required by MATLAB Runtime to run the application.

 Files Generated After Packaging MATLAB Functions

3-17

See Also
deploytool | mcc

More About
• “Create Standalone Application from MATLAB” on page 1-6
• “Create Excel Add-In from MATLAB”

3 Deploying Standalone Applications

3-18

Customizing a Compiler Project

• “Customize an Application” on page 4-2
• “Manage Support Packages” on page 4-12

4

Customize an Application
You can customize an application in several ways: customize the installer, manage files in
the project, or add a custom installer path using the Application Compiler app or the
Library Compiler app.

Customize the Installer
Change Application Icon

To change the default icon, click the graphic to the left of the Library name or
Application name field to preview the icon.

Click Select icon, and locate the graphic file to use as the application icon. Select the
Use mask option to fill any blank spaces around the icon with white or the Use border
option to add a border around the icon.

To return to the main window, click Save and Use.

Add Library or Application Information

You can provide further information about your application as follows:

• Library/Application Name: The name of the installed MATLAB artifacts. For example, if
the name is foo, the installed executable is foo.exe, and the Windows start menu
entry is foo. The folder created for the application is InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of
the app.

• Version: The default value is 1.0.
• Author name: Name of the developer.

4 Customizing a Compiler Project

4-2

• Support email address: Email address to use for contact information.
• Company name: The full installation path for the installed MATLAB artifacts. For

example, if the company name is bar, the full installation path would be
InstallRoot/bar/ApplicationName.

• Summary: Brief summary describing the application.
• Description: Detailed explanation about the application.

All information is optional and, unless otherwise stated, is only displayed on the first page
of the installer. On Windows systems, this information is also displayed in the Windows
Add/Remove Programs control panel.

Change the Splash Screen

The installer splash screen displays after the installer has started. It is displayed along
with a status bar while the installer initializes.

You can change the default image by clicking the Select custom splash screen. When
the file explorer opens, locate and select a new image.

You can drag and drop a custom image onto the default splash screen.

 Customize an Application

4-3

Change the Installation Path

This table lists the default path the installer uses when installing the packaged binaries
onto a target system.

Windows C:\Program Files\companyName
\appName

Mac OS X /Applications/companyName/appName
Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder
field under Additional installer options.

A text field specifying the path appended to the root folder is your installation folder. You
can pick the root folder for the application installation folder. This table lists the optional
custom root folders for each platform:

Windows C:\Users\userName\AppData
Linux /usr/local

Change the Logo

The logo displays after the installer has started. It is displayed on the right side of the
installer.

You change the default image in Additional Installer Options by clicking Select
custom logo. When the file explorer opens, locate and select a new image. You can drag
and drop a custom image onto the default logo.

4 Customizing a Compiler Project

4-4

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged
files on the target system. You can provide useful information concerning any additional
setup that is required to use the installed binaries and instructions for how to run the
application.

Determine Data Type of Command-Line Input (For Packaging
Standalone Applications Only)
When an executable standalone application is run in the command prompt, the default
input type is char. You can keep this default or retain numeric MATLAB variables from
the original MATLAB function.

To retain char input type to the executable standalone application, select Treat inputs
to the app as a MATLAB character vector. In this case, you must include code to
convert char to a numeric MATLAB type in the MATLAB function to be deployed as a
standalone application.

To retain numeric MATLAB variables, select the Treat inputs to the app as a numeric
MATLAB double option in the Application Compiler App. Thus, you do not need to
include code to convert char to a numeric MATLAB type.

Manage Required Files in Compiler Project
The compiler uses a dependency analysis function to automatically determine what
additional MATLAB files are required for the application to package and run. These files
are automatically packaged into the generated binary. The compiler does not generate
any wrapper code that allows direct access to the functions defined by the required files.

 Customize an Application

4-5

If you are using one of the compiler apps, the required files discovered by the dependency
analysis function are listed in the Files required for your application to run or Files
required for your library to run field.

To add files, click the plus button in the field, and select the file from the file explorer. To
remove files, select the files, and press the Delete key.

Caution Removing files from the list of required files may cause your application to not
package or not to run properly when deployed.

Using mcc

If you are using mcc to package your MATLAB code, the compiler does not display a list of
required files before running. Instead, it packages all the required files that are
discovered by the dependency analysis function and adds them to the generated binary
file.

You can add files to the list by passing one or more -a arguments to mcc. The -a
arguments add the specified files to the list of files to be added into the generated binary.
For example, -a hello.m adds the file hello.m to the list of required files and -
a ./foo adds all the files in foo and its subfolders to the list of required files.

Sample Driver File Creation
The following target types support sample driver file creation in MATLAB Compiler SDK:

• C++ shared library
• Java package
• .NET assembly
• Python® package

4 Customizing a Compiler Project

4-6

The sample driver file creation feature in Library Compiler uses MATLAB code to
generate sample driver files in the target language. The sample driver files are used to
implement the generated shared libraries into an application in the target language. In
the app, click Create New Sample to automatically generate a new MATLAB script, or
click Add Existing Sample to upload a MATLAB script that you have already written.
After you package your functions, a sample driver file in the target language is generated
from your MATLAB script and is saved in for_redistribution_files_only
\samples. Sample driver files are also included in the installer in
for_redistribution.

To automatically generate a new MATLAB file, click Create New Sample. This opens up
a MATLAB file for you to edit. The sample file serves as a starting point, and you can edit
it as necessary based on the behavior of your exported functions. The sample MATLAB
files must follow these guidelines:

• The sample file code must use only exported functions.
• Each exported function must be in a separate sample file.
• Each call to the same exported function must be a separate sample file.
• The output of the exported function must be an n-dimensional numeric, char, logical,

struct, or cell array.
• Data must be saved as a local variable and then passed to the exported function in the

sample file code.

Additional considerations specific to the target language are as follows:

• C++ mwArray API — varargin and varargout are not supported.
• .NET — Type-safe API is not supported.
• Python — Only char, struct, and cell arrays are supported.

 Customize an Application

4-7

To upload a MATLAB file that you have already written, click Add Existing Sample. The
MATLAB code should demonstrate how to execute the exported functions. The required
MATLAB code can be only a few lines:

input1 = [1 4 7; 2 5 8; 3 6 9];
input2 = [1 4 7; 2 5 8; 3 6 9];
addoutput = addmatrix(input1,input2);

This code must also follow all the same guidelines outlined for the Create New Sample
option.

You can also choose not to include a sample driver file at all during the packaging step. If
you create your own driver code in the target language, you can later copy and paste it
into the appropriate directory once the MATLAB functions are packaged.

Specify Files to Install with Application
The compiler packages files to install along with the ones it generates. By default, the
installer includes a readme file with instructions on installing the MATLAB Runtime and
configuring it.

These files are listed in the Files installed for your end user section of the app.

To add files to the list, click , and select the file from the file explorer.

JAR files are added to the application class path as if you had called javaaddpath.

Caution Removing the binary targets from the list results in an installer that does not
install the intended functionality.

When installed on a target computer, the files listed in the Files installed for your end
user are saved in the application folder.

4 Customizing a Compiler Project

4-8

Additional Runtime Settings
Type of Packaged
Application

Description Additional Runtime Settings Options

Standalone
Applications

• Do not display the
Windows
Command Shell
(console) for
execution — If you
select this option
on a Windows
platform, when you
double-click the
application from
the file explorer,
the application
window opens
without a command
prompt.

• Create log file —
Generate a
MATLAB log file for
the application. The
packaged
application can't
create a log file if
installed in the C:
folder on Windows
because the
application does
not have write
permission in that
folder.

 Customize an Application

4-9

Type of Packaged
Application

Description Additional Runtime Settings Options

Excel Add-Ins • Register the
component for
the current user
(Recommended
for non-admin
users) — This
option enables
registering the
component for the
current user
account. It is
provided for users
without admin
rights.

• Create log file —
Generate a
MATLAB log file for
the application. The
packaged
application can't
create a log file if
installed in the C:
folder on Windows
because the
application does
not have write
permission in that
folder.

See Also
applicationCompiler | libraryCompiler

More About
• “Create Standalone Application from MATLAB” on page 1-6

4 Customizing a Compiler Project

4-10

• “Create Excel Add-In from MATLAB”
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”

(MATLAB Compiler SDK)
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”

(MATLAB Compiler SDK)

 See Also

4-11

Manage Support Packages

Using a Compiler App
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, the app displays a Suggested Support Packages section.

The list displays all installed support packages that your MATLAB code requires. The list
is determined using these criteria:

• the support package is installed
• your code has a direct dependency on the support package
• your code is dependent on the base product of the support package
• your code is dependent on at least one of the files listed as a dependency in the

mcc.xml file of the support package, and the base product of the support package is
MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package. In
this case, the compiler adds the information to the installation notes. You can edit

4 Customizing a Compiler Project

4-12

installation notes in the Additional Installer Options section of the app. To remove the
installation note text, deselect the support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the
support package.

Using the Command Line
Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, use the-a flag with mcc command when packaging your MATLAB code
to specify supporting files in the support package folder. For example, if your function
uses the OS Generic Video Interface support package, run the following command:

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2016b\toolbox\daq\supportpackages\daqaudio -a 'C:\MATLAB\SupportPackages\R2016b\resources\daqaudio'

Some support packages require third-party drivers that the compiler cannot package. In
this case, you are responsible for downloading and installing the required drivers.

 Manage Support Packages

4-13

MATLAB Code Deployment

• “How Does MATLAB Deploy Functions?” on page 5-2
• “Dependency Analysis” on page 5-3
• “MEX-Files, DLLs, or Shared Libraries” on page 5-5
• “Deployable Archive” on page 5-6
• “Write Deployable MATLAB Code” on page 5-9
• “Calling Shared Libraries in Deployed Applications” on page 5-13
• “MATLAB Data Files in Compiled Applications” on page 5-15

5

How Does MATLAB Deploy Functions?
To deploy MATLAB functions, the compiler performs these tasks:

1 Analyzes files for dependencies using a dependency analysis function. Dependencies
affect deployability and originate from functions called by the file. Deployability is
affected by:

• File type — MATLAB, Java, MEX, and so on.
• File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis, see
“Dependency Analysis” on page 5-3.

2 Validates MEX-files. In particular, mexFunction entry points are verified.

For more details about MEX-file processing, see “MEX-Files, DLLs, or Shared
Libraries” on page 5-5.

3 Creates a deployable archive from the input files and their dependencies.

For more details about deployable archives see “Deployable Archive” on page 5-6.
4 Generates target-specific wrapper code.
5 Generates target-specific binary package.

For library targets such as C++ shared libraries, Java packages, or .NET assemblies,
the compiler invokes the required third-party compiler.

5 MATLAB Code Deployment

5-2

Dependency Analysis
In this section...
“Function Dependency” on page 5-3
“Data File Dependency” on page 5-3

MATLAB Compiler uses a dependency analysis function to determine the list of necessary
files to include in the generated package. Sometimes, this process generates a large list
of files, particularly when MATLAB object classes exist in the compilation and the
dependency analyzer cannot resolve overloaded methods at package time. Dependency
analysis also processes include/exclude files on each pass.

Tip To improve package time performance and lessen application size, prune the path
with the mcc command’s -N and -p flags. You can also specify Files required for your
application in the compiler app.

Function Dependency
The dependency analyzer searches for executable content such as:

• MATLAB files
• P-files

Note If the MATLAB file corresponding to the p-file is not available, the dependency
analysis cannot determine the p-file’s dependencies.

• .fig files
• MEX-files

Data File Dependency
In addition to executable content listed above, MATLAB Compiler can detect and
automatically include files that your MATLAB functions access by calling any of these
functions: audioinfo, audioread, csvread, daqread, dlmread, fileread, fopen,
imfinfo, importdata, imread, load, matfile, mmfileinfo, open, readtable,
type, VideoReader, xlsfinfo, xlsread, xmlread, and xslt.

 Dependency Analysis

5-3

If you are using the compiler app, these data files are automatically added to the Files
required for your application to run area of the app.

See Also
applicationCompiler | mcc

More About
• Application Compiler

5 MATLAB Code Deployment

5-4

MEX-Files, DLLs, or Shared Libraries
When you compile MATLAB functions containing MEX-files, ensure that the dependency
analyzer can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

• Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries to
determine their dependencies, explicitly include all executable files these files require.
To do so, use either the mcc -a option or the Files required for your application to
run field in the compiler app.

• If you have any doubts that the dependency analyzer can find a MATLAB function
called by a MEX-file, DLL, or shared library, then manually include that function. To do
so, use either the mcc -a option or the Files required for your application to run
field in the compiler app.

• Not all functions are compatible with the compiler. Check the file
mccExcludedFiles.log after your build completes. This file lists all functions called
from your application that you cannot deploy.

 MEX-Files, DLLs, or Shared Libraries

5-5

Deployable Archive
Each application or shared library you produce using the compiler has an embedded
deployable archive. The archive contains all the MATLAB based content (MATLAB files,
MEX-files, and so on). All MATLAB files in the deployable archive are encrypted using the
Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain
encrypted. For more information on how to extract the deployable archive refer to the
references in the following table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to
MATLAB Compiler SDK C/C++ integration “MATLAB Runtime Component Cache and

Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK .NET integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding” (MATLAB
Compiler SDK)

MATLAB Compiler SDK Java integration “Deployable Archive Embedding and
Extraction” (MATLAB Compiler SDK)

MATLAB Compiler Excel integration “MATLAB Runtime Component Cache and
Deployable Archive Embedding”

5 MATLAB Code Deployment

5-6

 Deployable Archive

5-7

Additional Details
Multiple deployable archives, such as those generated with COM components, .NET
assemblies, or Excel add-ins, can coexist in the same user application. You cannot,
however, mix and match the MATLAB files they contain. You cannot combine encrypted
and compressed MATLAB files from multiple deployable archives into another deployable
archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same deployable
archive, do not execute. If you want to generate another application with a different mix
of MATLAB files, recompile these MATLAB files into a new deployable archive.

The compiler deletes the deployable archive and generated binary following a failed
compilation, but only if these files did not exist before compilation initiates. Run help
mcc -K for more information.

Caution Release Engineers and Software Configuration Managers: Do not use build
procedures or processes that strip shared libraries on deployable archives. If you do, you
can possibly strip the deployable archive from the binary, resulting in run-time errors for
the driver application.

5 MATLAB Code Deployment

5-8

Write Deployable MATLAB Code

In this section...
“Packaged Applications Do Not Process MATLAB Files at Run Time” on page 5-9
“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files”
on page 5-10
“Use isdeployed Functions To Execute Deployment-Specific Code Paths” on page 5-10
“Gradually Refactor Applications That Depend on Noncompilable Functions” on page 5-
11
“Do Not Create or Use Nonconstant Static State Variables” on page 5-11
“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 5-12

Packaged Applications Do Not Process MATLAB Files at Run
Time
The compiler secures your code against unauthorized changes. Deployable MATLAB files
are suspended or frozen at the time of compilation. This does not mean that you cannot
deploy a flexible application—it means that you must design your application with
flexibility in mind. If you want the end user to be able to choose between two different
methods, for example, both methods must be available in the deployable archive.

The MATLAB Runtime only works on MATLAB code that was encrypted when the
deployable archive was built. Any function or process that dynamically generates new
MATLAB code will not work against the MATLAB Runtime.

Some MATLAB toolboxes, such as the Deep Learning Toolbox™ product, generate
MATLAB code dynamically. Because the MATLAB Runtime only executes encrypted
MATLAB files, and the Deep Learning Toolbox generates unencrypted MATLAB files, some
functions in the Deep Learning Toolbox cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot
be deployed. HELP, for example, is dynamic and not available in deployed mode. You can
use LOADLIBRARY in deployed mode if you provide it with a MATLAB function prototype.

Instead of compiling the function that generates the MATLAB code and attempting to
deploy it, perform the following tasks:

 Write Deployable MATLAB Code

5-9

1 Run the code once in MATLAB to obtain your generated function.
2 Package the MATLAB code, including the generated function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run-time processing, your
end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files
In general, good programming practices advise against redirecting a program search
path dynamically within the code. Many developers are prone to this behavior since it
mimics the actions they usually perform on the command line. However, this can lead to
problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and cannot
change. Therefore, any attempt to change these paths (using the cd command or the
addpath command) fails.

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use isdeployed Functions To Execute Deployment-Specific Code
Paths” on page 5-10 for details.

Use isdeployed Functions To Execute Deployment-Specific
Code Paths
The isdeployed function allows you to specify which portion of your MATLAB code is
deployable, and which is not. Such specification minimizes your compilation errors and
helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m.
Using ismcc and isdeployed, you specify when and what is packaged and executed.

5 MATLAB Code Deployment

5-10

Gradually Refactor Applications That Depend on
Noncompilable Functions
Over time, refactor, streamline, and modularize MATLAB code containing non-compilable
or non-deployable functions that use isdeployed. Your eventual goal is “graceful
degradation” of non-deployable code. In other words, the code must present the end user
with as few obstacles to deployment as possible until it is practically eliminated.

Partition your code into design-time and run-time code sections:

• Design-time code is code that is currently evolving. Almost all code goes through a
phase of perpetual rewriting, debugging, and optimization. In some toolboxes, such as
the Deep Learning Toolbox product, the code goes through a period of self-training as
it reacts to various data permutations and patterns. Such code is almost never
designed to be deployed.

• Run-time code, on the other hand, has solidified or become stable—it is in a finished
state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for
code that calls undeployable code.

Do Not Create or Use Nonconstant Static State Variables
Avoid using the following:

• Global variables in MATLAB code
• Static variables in MEX-files
• Static variables in Java code

The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because the
MATLAB Runtime process runs in a single thread. You cannot load more than one of these
non-constant, static variables into the same process. In addition, these static variables do
not work well in multithreaded applications.

When programming against packaged MATLAB code, you should be aware that an
instance of the MATLAB Runtime is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to the MATLAB
Runtime created by the previous instance of the same class. In short, if an assembly

 Write Deployable MATLAB Code

5-11

contains n unique classes, there will be maximum of n instances of MATLAB Runtime
created, each corresponding to one or more instances of one of the classes.

If you must use static variables, bind them to instances. For example, defining instance
variables in a Java class is preferable to defining the variable as static.

Get Proper Licenses for Toolbox Functionality You Want to
Deploy
You must have a valid MathWorks license for toolboxes you use to create deployable
MATLAB code.

See Also
isdeployed | ismcc

More About
• MATLAB Compiler support for MATLAB and toolboxes

5 MATLAB Code Deployment

5-12

https://www.mathworks.com/products/compiler/supported/compiler_support.html

Calling Shared Libraries in Deployed Applications
The loadlibrary function in MATLAB allows you to load shared library into MATLAB.

Loading libraries using header files is not supported in compiled applications. Therefore,
to create an application that uses the loadlibrary function with a header file, follow
these steps:

1 Create a prototype MATLAB file. Suppose that you call loadlibrary with the
following syntax.

loadlibrary(library, header)

Run the following command in MATLAB only once to create the prototype file:

loadlibrary(library, header, 'mfilename', 'mylibrarymfile');

This creates mylibrarymfile.m in the current folder. If you are on Windows,
another file named library_thunk_pcwin64.dll is also created in the current
folder.

2 Change the call to loadlibrary in your MATLAB to the following:

loadlibrary(library, @mylibrarymfile)
3 Compile and deploy the application.

• If you are integrating the library into a deployed application, specify the
library’s .dll along with library_thunk_pcwin64.dll, if created, using the -
a option of mcc command. If you are using Application Compiler or Library
Compiler apps, add the .dll files to the Files required for your application to
run section of the app.

• If you are providing the library as an external file that is not integrated with the
deployed application, place the library .dll file in the same folder as the
compiled application. If you are on Windows, you must integrate
library_thunk_pcwin64.dll into your compiled application.

The benefit of this approach is that you can replace the library with an updated
version without recompiling the deployed application. Replacing the library with a
different version works only if the function signatures of the function in the library
are not altered. This is because mylibrarymfile.m and
library_thunk_pcwin64.dll are tied to the function signatures of the
functions in the library.

 Calling Shared Libraries in Deployed Applications

5-13

Note You cannot use loadlibrary inside MATLAB to load a shared library built with
MATLAB. For more information on loadlibrary, see “Limitations to Shared Library
Support” (MATLAB).

Note Operating systems have a loadlibrary function, which loads specified Windows
operating system module into the address space of the calling process.

See Also
loadlibrary

Related Examples
• “Call C Functions in Shared Libraries” (MATLAB)

5 MATLAB Code Deployment

5-14

MATLAB Data Files in Compiled Applications
In this section...
“Explicitly Including MATLAB Data files Using the %#function Pragma” on page 5-15
“Load and Save Functions” on page 5-15

Explicitly Including MATLAB Data files Using the %#function
Pragma
The compiler excludes MATLAB data files (MAT-files) from dependency analysis by
default. See “Dependency Analysis” on page 5-3.

If you want the compiler to explicitly inspect data within a MAT file, you need to specify
the %#function pragma when writing your MATLAB code.

For example, if you are creating a solution with Deep Learning Toolbox, you need to use
the %#function pragma within your code to include a dependency on the
gmdistribution class, for instance.

Load and Save Functions
If your deployed application uses MATLAB data files (MAT-files), it is helpful to code LOAD
and SAVE functions to manipulate the data and store it for later processing.

• Use isdeployed to determine if your code is running in or out of the MATLAB
workspace.

• Specify the data file by either using WHICH (to locate its full path name) define it
relative to the location of ctfroot.

• All MAT-files are unchanged after mcc runs. These files are not encrypted when
written to the deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 5-6.

See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside, and
outside, of MATLAB.

 MATLAB Data Files in Compiled Applications

5-15

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

• user_data.mat
• userdata\extra_data.mat
• ..\externdata\extern_data.mat

1 Navigate to matlab_root\extern\examples\compiler\Data_Handling.
2 Compile ex_loadsave.m with the following mcc command:

mcc -mv ex_loadsave.m -a 'user_data.mat' -a
 '.\userdata\extra_data.mat' -a
 '..\externdata\extern_data.mat'

ex_loadsave.m
function ex_loadsave
% This example shows how to work with the
% "load/save" functions on data files in
% deployed mode. There are three source data files
% in this example.
% user_data.mat
% userdata\extra_data.mat
% ..\externdata\extern_data.mat
%
% Compile this example with the mcc command:
% mcc -m ex_loadsave.m -a 'user_data.mat' -a
% '.\userdata\extra_data.mat'
% -a '..\externdata\extern_data.mat'
% All the folders under the current main MATLAB file directory will
% be included as
% relative path to ctfroot; All other folders will have the
% folder
% structure included in the deployable archive file from root of the
% disk drive.
%
% If a data file is outside of the main MATLAB file path,
% the absolute path will be
% included in deployable archive and extracted under ctfroot. For example:
% Data file
% "c:\$matlabroot\examples\externdata\extern_data.mat"
% will be added into deployable archive and extracted to
% "$ctfroot\$matlabroot\examples\externdata\extern_data.mat".
%
% All mat/data files are unchanged after mcc runs. There is
% no encryption on these user included data files. They are
% included in the deployable archive.
%
% The target data file is:
% .\output\saved_data.mat

5 MATLAB Code Deployment

5-16

% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file =============================
if isdeployed
 % In deployed mode, all file under CTFRoot in the path are loaded
 % by full path name or relative to $ctfroot.
 % LOADFILENAME1=which(fullfile(ctfroot,mfilename,'user_data.mat'));
 % LOADFILENAME2=which(fullfile(ctfroot,'userdata','extra_data.mat'));
 LOADFILENAME1=which(fullfile('user_data.mat'));
 LOADFILENAME2=which(fullfile('extra_data.mat'));
 % For external data file, full path will be added into deployable archive;
 % you don't need specify the full path to find the file.
 LOADFILENAME3=which(fullfile('extern_data.mat'));
else
 %running the code in MATLAB
 LOADFILENAME1=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','user_data.mat');
 LOADFILENAME2=fullfile(matlabroot,'extern','examples','compiler',
 'Data_Handling','userdata','extra_data.mat');
 LOADFILENAME3=fullfile(matlabroot,'extern','examples','compiler',
 'externdata','extern_data.mat');
end

% Load the data file from current working directory
disp(['Load A from : ',LOADFILENAME1]);
load(LOADFILENAME1,'data1');
disp('A= ');
disp(data1);

% Load the data file from sub directory
disp(['Load B from : ',LOADFILENAME2]);
load(LOADFILENAME2,'data2');
disp('B= ');
disp(data2);

% Load extern data outside of current working directory
disp(['Load extern data from : ',LOADFILENAME3]);
load(LOADFILENAME3);
disp('ext_data= ');
disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = data1*data2;
disp('A * B = ');
disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd,filesep,'output');
if (~isdir(SAVEPATH))
 mkdir(SAVEPATH);
end
SAVEFILENAME=strcat(SAVEPATH,filesep,'saved_data.mat');

 MATLAB Data Files in Compiled Applications

5-17

disp(['Save the A * B result to : ',SAVEFILENAME]);
save(SAVEFILENAME, 'result');

5 MATLAB Code Deployment

5-18

Standalone Application Creation

6

Dependency Analysis Function and User Interaction with
the Compilation Path

addpath and rmpath in MATLAB
MATLAB Compiler uses the MATLAB search path to analyze dependencies. See addpath,
rmpath, savepath for information on working with the search path.

Note mcc does not use the MATLAB startup folder and will not find any path information
saved there.

Passing -I <directory> on the Command Line
You can use the -I option to add a folder to the beginning of the list of paths to use for
the current compilation. This feature is useful when you are compiling files that are in
folders currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line
There are two MATLAB Compiler options that provide more detailed manipulation of the
path. This feature acts like a “filter” applied to the MATLAB path for a given compilation.
The first option is -N. Passing -N on the mcc command line effectively clears the path of
all folders except the following core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler\deploy
• matlabroot\toolbox\compiler

It also retains all subfolders of the above list that appear on the MATLAB path at compile
time. Including -N on the command line allows you to replace folders from the original
path, while retaining the relative ordering of the included folders. All subfolders of the
included folders that appear on the original path are also included. In addition, the -N
option retains all folders that the user has included on the path that are not under
matlabroot\toolbox.

6 Standalone Application Creation

6-2

Use the -p option to add a folder to the compilation path in an order-sensitive context,
i.e., the same order in which they are found on your MATLAB path. The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an absolute
path, it is assumed to be under the current working folder. The rules for how these folders
are included are

• If a folder is included with -p that is on the original MATLAB path, the folder and all
its subfolders that appear on the original path are added to the compilation path in an
order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB path, that folder is
not included in the compilation. (You can use -I to add it.)

• If a path is added with the -I option while this feature is active (-N has been passed)
and it is already on the MATLAB path, it is added in the order-sensitive context as if it
were included with -p. Otherwise, the folder is added to the head of the path, as it
normally would be with -I.

Note The -p option requires the -N option on the mcc command line.

 Dependency Analysis Function and User Interaction with the Compilation Path

6-3

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers and to end
users.

• “About the MATLAB Runtime” on page 7-2
• “Install and Configure the MATLAB Runtime” on page 7-4
• “Run Applications Using a Network Installation of MATLAB Runtime (Windows Only)”

on page 7-11
• “MATLAB Runtime on Big Data Platforms” on page 7-12

7

About the MATLAB Runtime

In this section...
“How is the MATLAB Runtime Different from MATLAB?” on page 7-2
“Performance Considerations and the MATLAB Runtime” on page 7-3

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other
files that enables the execution of MATLAB files on computers without an installed
version of MATLAB. Applications that use artifacts built with MATLAB Compiler SDK
require access to an appropriate version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB
Runtime on their computers or know the location of a network-installed MATLAB
Runtime. The installers generated by the compiler apps may include the MATLAB
Runtime installer. If you compiled your artifact using mcc, you should direct your end-
users to download the MATLAB Runtime installer from the website https://
www.mathworks.com/products/compiler/mcr.

See “Install and Configure the MATLAB Runtime” on page 7-4 for more information.

How is the MATLAB Runtime Different from MATLAB?
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the

version of the MATLAB Runtime associated with the version of MATLAB Compiler SDK
with which it was created. For example, if you compiled an application using version
6.3 (R2016b) of MATLAB Compiler, users who do not have MATLAB installed must
have version 9.1 of the MATLAB Runtime installed. Use mcrversion to return the
version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed.
To change them, you must first customize them within MATLAB.

7 Deployment Process

7-2

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use
the MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources
consumed by the MATLAB Runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are
threadsafe. This can impact performance.

 About the MATLAB Runtime

7-3

Install and Configure the MATLAB Runtime
In this section...
“Download the MATLAB Runtime Installer from the Web” on page 7-4
“Install the MATLAB Runtime Interactively” on page 7-4
“Install the MATLAB Runtime Non-Interactively” on page 7-6
“Install the MATLAB Runtime without Administrator Rights” on page 7-8
“Multiple MATLAB Runtime Versions on Single Machine” on page 7-8
“MATLAB and MATLAB Runtime on Same Machine” on page 7-9
“Uninstall MATLAB Runtime” on page 7-10

Download the MATLAB Runtime Installer from the Web
Download the MATLAB® Runtime from the website at https://www.mathworks.com/
products/compiler/matlab-runtime.html.

Install the MATLAB Runtime Interactively
To install the MATLAB Runtime:

1 Unzip/Extract the archive containing the MATLAB Runtime installer.

Platform Steps
Windows Unzip the MATLAB Runtime installer. To unzip the installer:

• Right click the zip file
MATLAB_Runtime_R2019a_win64.zip

• Select Extract All, and then follow the instructions.
Linux Unzip the MATLAB Runtime installer at the terminal using

the unzip command.

For example, if you are unzipping the R2019a MATLAB
Runtime installer, at the Terminal, type:

unzip MATLAB_Runtime_R2019a_glnxa64.zip

7 Deployment Process

7-4

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Platform Steps
macOS Unzip the MATLAB Runtime installer at the terminal using

the unzip command.

For example, if you are unzipping the R2019a MATLAB
Runtime installer, at the Terminal, type:

unzip MATLAB_Runtime_R2019a_maci64.zip

Note The release part of the installer filename (_R2019a_) will change from one
release to the next.

2 Start the MATLAB Runtime installer.

Platform Steps
Windows Double-click the file setup.exe from the extracted files to

start the installer.
Linux At the Terminal, type:

sudo ./install

Note On Debian® based Linux distributions, you will need to
type:

gksudo ./install

macOS At the Terminal, type:

./install

Note You may need to enter an administrator username and
password after you run ./install.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the
information and then click Next to proceed with the installation.

4 Specify the folder in which you want to install the MATLAB Runtime in the Folder
Selection dialog box.

 Install and Configure the MATLAB Runtime

7-5

Note On Windows systems, you can have multiple versions of the MATLAB Runtime
on your computer but only one installation for any particular version. If you already
have an existing installation, the MATLAB Runtime installer does not display the
Folder Selection dialog box because you can only overwrite the existing installation
in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and macOS platforms, after copying files to your disk, the MATLAB Runtime

installer displays the Product Configuration Notes dialog box. This dialog box
contains information necessary for setting your path environment variables. Copy the
path information from this dialog box and then click Next.

7 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively
To install the MATLAB Runtime without having to interact with the installer dialog boxes,
use one of the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user

interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default values
for installation options. You can override these defaults by using MATLAB Runtime
installer command-line options or an installer control file.

Note When running in silent or automated mode, the installer overwrites the default
installation location.

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder,
called $temp in this documentation.

Note On Windows systems, manually extract the contents of the installer file.

7 Deployment Process

7-6

2 Run the MATLAB Runtime installer, specifying the -mode option and -
agreeToLicense yes on the command line.

Note On most platforms, the installer is located at the root of the folder into which
the archive was extracted. On Windows 64, the installer is located in the archives
bin folder.

Platform Command
Windows setup -mode silent -

agreeToLicense yes
Linux ./install -mode silent -

agreeToLicense yes
macOS ./install -mode silent -

agreeToLicense yes

Note If you do not include the -agreeToLicense yes the installer will not install
the MATLAB Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the
location defined by your TEMP environment variable.

4 On Linux and macOS systems, specify the path variable. The MATLAB Runtime
installer displays the log information for Linux and macOS systems at the command
prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values
unless told to do otherwise. Like the MATLAB installer, the MATLAB Runtime installer
accepts a number of command line options that modify the default installation properties.

Option Description
-destinationFolder Specifies where the MATLAB Runtime will

be installed.

 Install and Configure the MATLAB Runtime

7-7

Option Description
-outputFile Specifies where the installation log file is

written.
-automatedModeTimeout Specifies how long, in milliseconds, that the

dialog boxes are displayed when run in
automatic mode.

-inputFile Specifies an installer control file with the
values for all of the above options.

Note The MATLAB Runtime installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available for a full
MATLAB installation. Only the options listed in this section are valid for the MATLAB
Runtime installer.

Install the MATLAB Runtime without Administrator Rights
To install the MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you
have administrator rights.

2 Copy the folder where the MATLAB Runtime was installed to the machine without
administrator rights. You can compress the folder into zip file and distribute to
multiple users.

3 On the machine without administrator rights, add the mcr_root\runtime\arch
directory onto the user’s path environment variable.

Note You don’t need administrator rights for adding directories to a user’s path
environment variable.

Multiple MATLAB Runtime Versions on Single Machine
MCRInstaller supports the installation of multiple versions of the MATLAB Runtime on
a target machine. This allows applications compiled with different versions of the
MATLAB Runtime to execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you can
remove the unwanted ones. On Windows, run Add or Remove Programs from the

7 Deployment Process

7-8

Control Panel to remove any of the previous versions. On Linux, you manually delete the
unwanted MATLAB Runtime. You can remove unwanted versions before or after
installation of a more recent version of the MATLAB Runtime, as versions can be installed
or removed in any order.

MATLAB and MATLAB Runtime on Same Machine
You do not need to install MATLAB Runtime on your machine if your machine has
MATLAB installed. The version of MATLAB should be the same as the version of MATLAB
that was used to create the compiled MATLAB code. Also, to act as the MATLAB Runtime
replacement, the MATLAB installation must include MATLAB Compiler.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must
adjust the library path according to your needs.

• Windows

To run deployed MATLAB code against MATLAB Runtime install, mcr_root\ver
\runtime\win64 must appear on your system path before matlabroot\runtime
\win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB installation area.

• Linux

To run deployed MATLAB code against MATLAB Runtime on Linux, the folder
<mcr_root>/runtime/<arch> must appear on your LD_LIBRARY_PATH before
matlabroot/runtime/<arch>.

• macOS

To run deployed MATLAB code on macOS, the <mcr_root>/runtime folder must
appear on your DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

 Install and Configure the MATLAB Runtime

7-9

To run MATLAB on macOS or Intel® Mac, matlabroot/runtime/<arch> must
appear on your DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

Uninstall MATLAB Runtime
The method you use to uninstall MATLAB Runtime from your computer varies depending
on the type of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control
panel, and double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the mcr_root\uninstall
\bin\arch folder, where mcr_root is your MATLAB Runtime installation folder and
arch is an architecture-specific folder, such as win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products dialog
box.

3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

macOS

1 Exit the application.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation

folder might be named MATLAB_Compiler_Runtime.app in your Applications
folder.

3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty
Trash from the Finder menu.

7 Deployment Process

7-10

Run Applications Using a Network Installation of
MATLAB Runtime (Windows Only)

Local clients on a network can access MATLAB Runtime on a network drive. To run
applications using a network install of MATLAB Runtime:

1 Run the mcrinstaller function to obtain name and location of the MATLAB
Runtime installer.

2 Copy the entire MATLAB Runtime folder onto a network drive.
3 Copy the compiled application into a separate folder on the network drive, and add

the path <mcr_root>\<ver>\runtime\<arch> to all client machines. All network
clients can then execute the application.

4 The following table specifies what DLLs to register to deploy specific applications.

Application Deployed DLL's to Register on Each Client
Machine

Excel Add-Ins mwcomutil.dll

mwcommgr.dll
.NET assemblies to create COM objects mwcomutil.dll

To register the DLLs, at the DOS prompt enter:

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

Note These libraries are automatically registered on the machine on which the
installer was run.

Note There is no need to perform these steps on a Linux system.

Distributing to a Linux network file system is the same as distributing to a local file
system. You set up the LD_LIBRARY_PATH or use scripts on page B-2 which point
to the MATLAB Runtime installation.

 Run Applications Using a Network Installation of MATLAB Runtime (Windows Only)

7-11

MATLAB Runtime on Big Data Platforms
MATLAB Runtime an be download and installed on big data platforms such as Cloudera®,
Apache Ambari™, and Azure® HDInsight.

Cloudera
MATLAB Runtime can be downloaded as a parcel by Cloudera Manager.

Download URL

https://www.mathworks.com/supportfiles/downloads/R2019a/
deployment_files/R2019a/cdhparcels

After downloading the parcel, you can and distribute and activate it across the cluster.
For more information on how to work with Cloudera Manager and parcels, see the
Cloudera documentation.

Apache Ambari
MATLAB Runtime is available for distribution as an Apache Ambari stack.

You can distribute MATLAB Runtime across a Hadoop cluster using Apache Ambari.

Download URL

https://www.mathworks.com/supportfiles/downloads/R2019a/
deployment_files/R2019a/ambari/matlab-runtime-2018a-service.tgz

https://www.mathworks.com/supportfiles/downloads/R2019a/
deployment_files/R2019a/ambari/matlab-runtime-2018a-service.sha1

For more information, see the Apache Ambari documentation.

Azure HDInsight
MATLAB Runtime is available for distribution as an Azure HDInsight script action. You
can distribute MATLAB Runtime across an Azure HDInsight cluster using script action.

Download URL

7 Deployment Process

7-12

https://www.mathworks.com/supportfiles/downloads/R2019a/
deployment_files/R2019a/hdinsight

 MATLAB Runtime on Big Data Platforms

7-13

Work with the MATLAB Runtime

• “MATLAB Runtime Startup Options” on page 8-2
• “Using the MATLAB Runtime User Data Interface” on page 8-4
• “Display the MATLAB Runtime Initialization Messages” on page 8-6

8

MATLAB Runtime Startup Options

Set MATLAB Runtime Options
For a standalone executable, set MATLAB Runtime options by specifying the -R switch
and arguments. You can set options from either of the following:

• The Additional Runtime Settings area of the compiler apps.
• The mcc command.

Note Not all options are available for all compilation targets.

Use a Compiler App

In the Additional Runtime Settings area of the compiler apps, you can set the following
options.

MATLAB Runtime Startup
Option

Description Setting

-nojvm Disable the Java Virtual
Machine (JVM™), which is
enabled by default. This can
help improve the MATLAB
Runtime performance.

Select the No JVM check
box.

-nodisplay On Linux, open the MATLAB
Runtime without display
functionality.

In the Settings box, enter -
R -nodisplay.

-logfile Write information about the
MATLAB Runtime startup to
a logfile.

Select the Create log file
check box. Enter the path to
the log file, including the log
file name, in the Log File
box.

-startmsg Specify message to be
displayed when the MATLAB
Runtime begins
initialization.

In the Settings box, enter -
R 'startmsg, message
text'.

8 Work with the MATLAB Runtime

8-2

MATLAB Runtime Startup
Option

Description Setting

-completemsg Specify message to be
displayed when the MATLAB
Runtime completes
initialization.

In the Settings box, enter -
R 'completemsg,
message text'.

Set MATLAB Runtime Startup Options Using the mcc Command Line

When you use the command line, specify the -R switch to invoke the MATLAB Runtime
startup options you want to use.

Following are examples of using mcc -R to invoke -nojvm, -nodisplay, and -logfile
when building a standalone executable (designated by the -m switch).

Set -nojvm

mcc -m -R -nojvm -v foo.m

Set -nodisplay (Linux Only)

mcc -m -R -nodisplay -v foo.m

Set -logfile

mcc -e -R '-logfile,bar.txt' -v foo.m

Set -nojvm, -nodisplay, and -logfile with One Command

mcc -m -R '-logfile,bar.txt,-nojvm,-nodisplay' -v foo.m

 MATLAB Runtime Startup Options

8-3

Using the MATLAB Runtime User Data Interface
The MATLAB Runtime User Data Interface lets you easily access MATLAB Runtime data.
It allows keys and values to be passed among a MATLAB Runtime instance, the MATLAB
code running on the MATLAB Runtime, and the host application that created the instance.
Through calls to the MATLAB Runtime User Data Interface API, you access MATLAB
Runtime data by creating a per-instance associative array of mxArrays, consisting of a
mapping from string keys to mxArray values. Reasons for doing this include, but are not
limited to the following:

• You need to supply run-time profile information to a client running an application
created with the Parallel Computing Toolbox. You supply and change profile
information on a per-execution basis. For example, two instances of the same
application may run simultaneously with different profiles. For more information, see
“Use Parallel Computing Toolbox in Deployed Applications” (MATLAB Compiler SDK).

• You want to set up a global workspace, a global variable, or variables that MATLAB
and your client can access.

• You want to store the state of any variable or group of variables.

The API consists of:

• Two MATLAB functions callable from within deployed application MATLAB code
• Four external C functions callable from within deployed application wrapper code

MATLAB Functions
Use the MATLAB functions getmcruserdata and setmcruserdata from deployed
MATLAB applications. They are loaded by default only in applications created with the
MATLAB Compiler or MATLAB Compiler SDK products.

You can include setmcruserdata and getmcruserdata in your packaged application
using mcc as follows:

mcc -g -W cpplib:<lib> -T link:lib ... setmcruserdata.m getmcruserdata.m

You can also use the %# function in your MATLAB file to include setmcruserdata and
getmcruserdata. Doing so ensures inclusion of these functions in the packaged
application when you use deploytool.

8 Work with the MATLAB Runtime

8-4

Tip getmcruserdata and setmcruserdata produce an Unknown function error
when called in MATLAB if the MCLMCR module cannot be located. You can avoid this
situation by calling isdeployed before calling getmcruserdata and setmcruserdata.
For more information about the isdeployed function, see the isdeployed reference
page.

Set and Retrieve MATLAB Runtime Data for Shared Libraries
There are many possible scenarios for working with MATLAB Runtime data. The most
general scenario involves setting the MATLAB Runtime with specific data for later
retrieval, as follows:

1 In your code, include the MATLAB Runtime header file and the library header
generated by MATLAB Compiler SDK.

2 Properly initialize your application using mclInitializeApplication.
3 After creating your input data, write or set it to the MATLAB Runtime with

setmcruserdata.
4 After calling functions or performing other processing, retrieve the new MATLAB

Runtime data with getmcruserdata.
5 Free up storage memory in work areas by disposing of unneeded arrays with

mxDestroyArray.
6 Shut down your application properly with mclTerminateApplication.

See Also
getmcruserdata | setmcruserdata

 See Also

8-5

Display the MATLAB Runtime Initialization Messages
You can display a console message for end users that informs them when MATLAB
Runtime initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

• Use the default start-up message only (Initializing MATLAB runtime version
x.xx)

• Customize the start-up or completion message with text of your choice. The default
start-up message will also display prior to displaying your customized start-up
message.

Some examples of different ways to invoke this option follow:

This command: Displays:
mcc -R -startmsg Default start-up message Initializing

MATLAB Runtime version x.xx
mcc -R -startmsg,'user customized
message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for start-up

mcc -R -completemsg,'user
customized message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for
completion

mcc -R -startmsg,'user customized
message' -R -completemsg,'user
customized message"

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for both
start-up and completion by specifying -R
before each option

mcc -R -startmsg,'user customized
message',-completemsg,'user
customized message'

Default start-up message Initializing
MATLAB Runtime version x.xx and
user customized message for both
start-up and completion by specifying -R
only once

8 Work with the MATLAB Runtime

8-6

Best Practices
Keep the following in mind when using mcc -R:

• When calling mcc in the MATLAB command window, place the comma inside the single
quote.

mcc -m hello.m -R '-startmsg,"Message_Without_Space"'
• If your initialization message has a space in it, call mcc from the system command

window or use !mcc from MATLAB.

 Display the MATLAB Runtime Initialization Messages

8-7

Distributing Code to an End User

9

Distribute MATLAB Code Using the MATLAB Runtime
On target computers without MATLAB, install the MATLAB Runtime, if it is not already
present on the deployment machine.

MATLAB Runtime
The MATLAB Runtime is an execution engine made up of the same shared libraries
MATLAB uses to enable execution of MATLAB files on systems without an installed
version of MATLAB.

The MATLAB Runtime is available for downloading from the web to simplify the
distribution of your applications created using the MATLAB Compiler or the MATLAB
Compiler SDK. Download the MATLAB Runtime from the MATLAB Runtime product page.

The MATLAB Runtime installer does the following:

1 Install the MATLAB Runtime.
2 Install the component assembly in the folder from which the installer is run.
3 Copy the MWArray assembly to the Global Assembly Cache (GAC), as part of

installing the MATLAB Runtime.

MATLAB Runtime Prerequisites
1 The MATLAB Runtime installer requires administrator privileges to run.
2 The version of the MATLAB Runtime that runs your application on the target

computer must be compatible with the version of MATLAB Compiler or MATLAB
Compiler SDK that built the deployed code.

3 Do not install the MATLAB Runtime in MATLAB installation directories.
4 The MATLAB Runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB Runtime in the generated installer, using
one of the compiler apps. The generated installer contains all files needed to run the
standalone application or shared library built with MATLAB Compiler or MATLAB
Compiler SDK and properly lays them out on a target system.

1 On the Packaging Options section of the compiler interface, select one or both of
the following options:

9 Distributing Code to an End User

9-2

https://www.mathworks.com/products/compiler/matlab-runtime.html

• Runtime downloaded from web — This option builds an installer that invokes
the MATLAB Runtime installer from the MathWorks website.

• Runtime included in package — The option includes the MATLAB Runtime
installer into the generated installer.

2 Click Package.
3 Distribute the installer as needed.

Install the MATLAB Runtime

This example shows how to install the MATLAB Runtime on a system.

If you are given an installer containing the compiled artifacts, then the MATLAB Runtime
is installed along with the application or shared library. If you are given just the raw
binary files, download the MATLAB Runtime installer from the web and run the installer.

Note If you are running on a platform other than Windows, modify the path on the target
machine. Setting the paths enables your application to find the MATLAB Runtime. For
more information on setting the path, see “MATLAB Runtime Path Settings for Run-Time
Deployment” (MATLAB Compiler SDK).

Windows paths are set automatically. On Linux and Mac, you can use the run script to set
paths. See “Problems Setting MATLAB Runtime Paths” on page B-2 for detailed
information on performing all deployment tasks specifically with UNIX® variants such as
Linux and Mac.

 Distribute MATLAB Code Using the MATLAB Runtime

9-3

Compiler Commands

This chapter describes mcc, which is the command that invokes the compiler.

10

Compiler Tips
In this section...
“Deploying Applications That Call the Java Native Libraries” on page 10-2
“Using the VER Function in a Compiled MATLAB Application” on page 10-2

Deploying Applications That Call the Java Native Libraries
If your application interacts with Java, you need to specify the search path for native
method libraries by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from matlabroot/toolbox/local/librarypath.txt.
2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MATLAB Runtime library archive
files are installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library that
your application's Java code needs to load.

Using the VER Function in a Compiled MATLAB Application
When you use the VER function in a compiled MATLAB application, it will perform with
the same functionality as if you had called it from MATLAB. However, be aware that when
using VER in a compiled MATLAB application, only version information for toolboxes
which the compiled application uses will be displayed.

10 Compiler Commands

10-2

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build standalone
applications. You can distribute standalone applications to users who do not have
MATLAB software on their systems.

11

Deploying Standalone Applications
In this section...
“Compiling the Application” on page 11-2
“Testing the Application” on page 11-2
“Deploying the Application” on page 11-3
“Running the Application” on page 11-5

Compiling the Application
This example takes a MATLAB file, magicsquare.m, and creates a standalone
application, magicsquare.

1 Copy the file magicsquare.m from

matlabroot\extern\examples\compiler

to your work folder.
2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone application.
The -v option (verbose) displays the compilation steps throughout the process and
helps identify other useful information such as which third-party compiler is used and
what environment variables are referenced.

This command creates the standalone application called magicsquare and
additional files. The Windows platform appends the .exe extension to the name.

Testing the Application
These steps test your standalone application on your development machine.

Note Testing your application on your development machine is an important step to help
ensure that your application is compilable. To verify that your application compiled
properly, you must test all functionality that is available with the application. If you
receive an error message similar to Undefined function or Attempt to execute

11 Standalone Applications

11-2

script script_name as a function, it is likely that the application will not run
properly on deployment machines. Most likely, your deployable archive is missing some
necessary functions. Use -a to add the missing functions to the archive and recompile
your code.

1 Update your path as described in “MATLAB Runtime Path Settings for Run-Time
Deployment” on page 14-2

2 Run the standalone application from the system prompt (shell prompt on UNIX or
DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Deploying the Application
You can distribute a MATLAB Compiler generated standalone application to any target
machine that has the same operating system as the machine on which the application was
compiled.

For example, if you want to deploy an application to a Windows machine, you must use
MATLAB Compiler to build the application on a Windows machine. If you want to deploy
the same application to a UNIX machine, you must use MATLAB Compiler on the same
UNIX platform and completely rebuild the application. To deploy an application to
multiple platforms requires MATLAB and MATLAB Compiler licenses on all the desired
platforms.

Windows

Gather and package the following files and distribute them to the deployment machine.

 Deploying Standalone Applications

11-3

Component Description
MATLAB Runtime installer Self-extracting MATLAB Runtime library utility; platform-

dependent file that must correspond to the end user's
platform. Run the mcrinstaller command to obtain
name of executable.

magicsquare Application; magicsquare.exe for Windows

UNIX

Distribute and package your standalone application on UNIX by packaging the following
files and distributing them to the deployment machine.

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file

that must correspond to the end user's platform. Run the
mcrinstaller command to obtain name of the binary.

magicsquare Application

Maci64

Distribute and package your standalone application on 64-bit Macintosh by copying,
tarring, or zipping as described in the following table.

Component Description
MATLAB Runtime installer MATLAB Runtime library archive; platform-dependent file

that must correspond to the end user's platform. Run the
mcrinstaller command to obtain name of the binary.

magicsquare Application

11 Standalone Applications

11-4

Component Description
magicsquare.app Application bundle

Assuming foo is a folder within your current folder:

• Distribute by copying:

cp -R myapp.app foo
• Distribute by tarring:

tar -cvf myapp.tar myapp.app
cd foo
tar -xvf../ myapp.tar

• Distribute by zipping:

zip -ry myapp myapp.app
cd foo
unzip ..\myapp.zip

Running the Application
These steps describe the process that end users must follow to install and run the
application on their machines.

Preparing Your Machines

Install the MATLAB Runtime by running the mcrinstaller command to obtain name of
the executable or binary. For more information on running the MATLAB Runtime installer
utility and modifying your system paths, see “MATLAB Runtime” on page 9-2.

Executing the Application

Run the magicsquare standalone application from the system prompt and provide a
number representing the size of the desired magic square, for example, 4.

magicsquare 4

The results are displayed as:

ans =
 16 2 3 13
 5 11 10 8

 Deploying Standalone Applications

11-5

 9 7 6 12
 4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as string input
and you need to consider that in your application.

Note Before executing your MATLAB Compiler generated executable, set the
LD_PRELOAD environment variable to \lib\libgcc_s.so.1.

Executing the Application on 64-Bit Macintosh (Maci64)

For 64-bit Macintosh, you run the application through the bundle:

magicsquare.app/Contents/MacOS/magicsquare

11 Standalone Applications

11-6

Troubleshooting

• “Testing Failures” on page 12-2
• “Investigate Deployed Application Failures” on page 12-5

12

Testing Failures
After you have successfully compiled your application, the next step is to test it on a
development machine and deploy it on a target machine. Typically the target machine
does not have a MATLAB installation and requires that the MATLAB Runtime be installed.
A distribution includes all of the files that are required by your application to run, which
include the executable, deployable archive and the MATLAB Runtime.

Test the application on the development machine by running the application against the
MATLAB Runtime shipped with MATLAB Compiler. This will verify that library
dependencies are correct, that the deployable archive can be extracted and that all
MATLAB code, MEX—files and support files required by the application have been
included in the archive. If you encounter errors testing your application, the questions in
the column to the right may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application's execution by issuing !
application-name at the MATLAB prompt. If your application executes within MATLAB
but not from outside, this can indicate an issue with the system PATH variable.

Does the application begin execution and result in MATLAB or other errors?

Ensure that you included all necessary files when compiling your application (see the
readme.txt file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically included by
MATLAB Compiler; however, functions that are not explicitly called, for example through
EVAL, need to be included at compilation using the -a switch of the mcc command. Also,
any support files like .mat, .txt, or .html files need to be added to the archive with the
-a switch. There is a limitation on the functionality of MATLAB and associated toolboxes
that can be compiled. Check the documentation to see that the functions used in your
application's MATLAB files are valid. Check the file mccExcludedFiles.log on the
development machine. This file lists all functions called from your application that cannot
be compiled.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an environment
where multiple versions of MATLAB are installed. Some older versions of MATLAB may
not be fully compatible with this architecture.

12 Troubleshooting

12-2

On Windows, ensure that the matlabroot\runtime\win64 of the version of MATLAB in
which you are compiling appears ahead of matlabroot\runtime\win64 of other
versions of MATLAB installed on the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH on Linux)
match. Do this by comparing the outputs of !printenv at the MATLAB prompt and
printenv at the shell prompt. Using this path allows you to use mcc from the operating
system command line.

If you are testing a standalone executable or shared library and driver
application, did you install the MATLAB Runtime?

All shared libraries required for your standalone executable or shared library are
contained in the MATLAB Runtime. Installing the MATLAB Runtime is required for any of
the deployment targets.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so
are generally caused by incorrect installation of the MATLAB Runtime. It is also possible
that the MATLAB Runtime is installed correctly, but that the PATH, LD_LIBRARY_PATH, or
DYLD_LIBRARY_PATH variables is set incorrectly. For information on installing the
MATLAB Runtime on a deployment machine, see “Install and Configure the MATLAB
Runtime” on page 7-4.

Caution Do not solve these problems by moving libraries or other files within the
MATLAB Runtime folder structure. The system is designed to accommodate different
MATLAB Runtime versions operating on the same machine. The folder structure is an
important part of this feature.

Does your system’s graphics card support the graphics application?

In situations where the existing hardware graphics card does not support the graphics
application, you should use software OpenGL. OpenGL libraries are visible for an
application by appending matlab/sys/opengl/lib/arch to the LD_LIBRARY_PATH.
For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

For issues with MATLAB graphics in Linux, set the environment variable
LD_LIBRARY_PATH to:

 Testing Failures

12-3

setenv LD_LIBRARY_PATH $MATLAB/sys/opengl/lib/glnxa64:$LD_LIBRARY_PATH

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, the MATLAB Runtime first looks on the system
library path. If OpenGL is not found there, it will use the LD_LIBRARY_PATH environment
variable to locate the libraries. If you are getting failures due to the OpenGL libraries not
being found, you can append the location of the OpenGL libraries to the
LD_LIBRARY_PATH environment variable. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

12 Troubleshooting

12-4

Investigate Deployed Application Failures
After the application is working on the test machine, failures can be isolated in end-user
deployment. The end users of your application need to install the MATLAB Runtime on
their machines. The MATLAB Runtime includes a set of shared libraries that provides
support for all features of MATLAB. If your application fails during end-user deployment,
the following questions in the column to the right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy to end users,
after running successfully in a test environment. For a detailed list of guidelines for
writing MATLAB code that can be consumed by end users, see “Write Deployable
MATLAB Code” on page 5-9

Is the MATLAB Runtime installed?

All shared libraries required for your standalone executable or shared library are
contained in the MATLAB Runtime. Installing the MATLAB Runtime is required for any of
the deployment targets. See “Install and Configure the MATLAB Runtime” on page 7-4 for
complete information.

If running on UNIX or Mac, did you update the dynamic library path after
installing the MATLAB Runtime?

For information on installing the MATLAB Runtime on a deployment machine, see “Install
and Configure the MATLAB Runtime” on page 7-4.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so
are generally caused by incorrect installation of the MATLAB Runtime. It is also possible
that the MATLAB Runtime is installed correctly, but that the PATH, LD_LIBRARY_PATH,
or DYLD_LIBRARY_PATH variables are set incorrectly. For information on installing the
MATLAB Runtime on a deployment machine, see “Install and Configure the MATLAB
Runtime” on page 7-4.

Caution Do not solve these problems by moving libraries or other files within the
MATLAB Runtime folder structure. The system is designed to accommodate different
MATLAB Runtime versions operating on the same machine. The folder structure is an
important part of this feature.

 Investigate Deployed Application Failures

12-5

Do you have write access to the directory the application is installed in?

The first operation attempted by a compiled application is extraction of the deployable
archive. If the archive is not extracted, the application cannot access the compiled
MATLAB code and the application fails. If the application has write access to the
installation folder, a subfolder named application-name_mcr is created the first time
the application is run. After this subfolder is created, the application no longer needs
write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable needs to be
redeployed, since it also contains the embedded deployable archive. The deployable
archive is keyed to a specific compilation session. Every time an application is
recompiled, a new, matched deployable archive is created. As above, write access is
required to expand the new deployable archive. Deleting the existing application-
name_mcr folder and running the new executable will verify that the application can
expand the new deployable archive.

12 Troubleshooting

12-6

Limitations and Restrictions

• “Limitations” on page 13-2
• “Functions not supported by MATLAB Compiler / MATLAB Compiler SDK ”

on page 13-9

13

Limitations

Packaging MATLAB and Toolboxes
MATLAB Compiler supports the full MATLAB language and almost all toolboxes based on
MATLAB except:

• Most of the prebuilt graphical user interfaces included in MATLAB and its companion
toolboxes.

• Functionality that cannot be called directly from the command line.
• Symbolic Math Toolbox™
• Cross-platform compatibility of applications. For example, you cannot run an

application compiled in Windows on Linux.

Compiled applications can run only on operating systems that run MATLAB. However,
components generated by the MATLAB Compiler cannot be used in MATLAB. Also, since
the MATLAB Runtime is approximately the same size as MATLAB, applications built with
MATLAB Compiler need specific storage memory and RAM to operate. For the most up-to-
date information about system requirements, go to the MathWorks website.

To see the full list of MATLAB Compiler limitations, visit: https://
www.mathworks.com/products/compiler/compiler_support.html.

Note For a list of functions not supported by the MATLAB Compiler See “Functions not
supported by MATLAB Compiler / MATLAB Compiler SDK” on page 13-9.

Fixing Callback Problems: Missing Functions
When MATLAB Compiler creates a standalone application, it packages the MATLAB files
that you specify on the command line. In addition, it includes any other MATLAB files that
your packaged MATLAB files call. MATLAB Compiler uses a dependency analysis, which
determines all the functions on which the supplied MATLAB files, MEX-files, and P-files
depend.

Note If the MATLAB file associated with a p-file is unavailable, the dependency analysis
cannot discover the p-file dependencies.

13 Limitations and Restrictions

13-2

https://www.mathworks.com/support/sysreq.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html
https://www.mathworks.com/products/compiler/supported/compiler_support.html

The dependency analysis cannot locate a function if the only place the function is called in
your MATLAB file is a call to the function in either of the following:

• Callback string
• Character array passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer in .mat
files that are loaded by compiled applications. Use the mcc -a argument or the
%#function pragma to identify .mat file classes or functions that are supported by
the load command.

MATLAB Compiler does not look in these text character arrays for the names of functions
to package.

Symptom

Your application runs, but an interactive user interface element, such as a push button,
does not work. The compiled application issues this error message:

An error occurred in the callback: change_colormap
The error message caught was : Reference to unknown function
 change_colormap from FEVAL in stand-alone mode.

Workaround

There are several ways to eliminate this error:

• Using the %#function pragma and specifying callbacks as character arrays
• Specifying callbacks with function handles
• Using the -a option

Specifying Callbacks as Character Arrays

Create a list of all the functions that are specified only in callback character arrays and
pass these functions using separate %#function pragma statements. This overrides the
product dependency analysis and instructs it to explicitly include the functions listed in
the %#function pragmas.

For example, the call to the change_colormap function in the sample application
my_test illustrates this problem. To make sure MATLAB Compiler processes the
change_colormap MATLAB file, list the function name in the %#function pragma.

 Limitations

13-3

function my_test()
% Graphics library callback test application

%#function change_colormap

peaks;

p_btn = uicontrol(gcf,...
 'Style', 'pushbutton',...
 'Position',[10 10 133 25],...
 'String', 'Make Black & White',...
 'CallBack','change_colormap');

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example
above, and replace the last line with:

'CallBack',@change_colormap);

For more information on specifying the value of a callback, see the MATLAB Programming
Fundamentals documentation.

Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing
MATLAB file on the MATLAB Compiler command line using the -a option.

Finding Missing Functions in a MATLAB File
To find functions in your application that need to be listed in a %#function pragma,
search your MATLAB file source code for text specified as callback character arrays or as
arguments to the feval, fminbnd, fminsearch, funm, and fzero functions or any ODE
solvers.

To find text used as callback character array, search for the characters “Callback” or “fcn”
in your MATLAB file. This search finds all the Callback properties defined by graphics
objects, such as uicontrol and uimenu. In addition, it finds the properties of figures
and axes that end in Fcn, such as CloseRequestFcn, that also support callbacks.

13 Limitations and Restrictions

13-4

Suppressing Warnings on the UNIX System
Several warnings might appear when you run a standalone application on the UNIX
system.

To suppress the libjvm.so warning, set the dynamic library path properly for your
platform. See “MATLAB Runtime Path Settings for Run-Time Deployment” on page 14-
2.

You can also use the compiler option -R -nojvm to set your application's nojvm run-time
option, if the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option
If your program uses graphics and you compile with the -nojvm option, you get a run-
time error.

Cannot Create the Output File
If you receive this error, there are several possible causes to consider.

Can't create the output file filename

Possible causes include:

• Lack of write permission for the folder where MATLAB Compiler is attempting to write
the file (most likely the current working folder).

• Lack of free disk space in the folder where MATLAB Compiler is attempting to write
the file (most likely the current working folder).

• If you are creating a standalone application and have been testing it, it is possible that
a process is running and is blocking MATLAB Compiler from overwriting it with a new
version.

No MATLAB File Help for Packaged Functions
If you create a MATLAB file with self-documenting online help and package it, the results
of following command are unintelligible:

help filename

 Limitations

13-5

Note For performance reasons, MATLAB file comments are stripped out before MATLAB
Runtime encryption.

No MATLAB Runtime Versioning on Mac OS X
The feature that allows you to install multiple versions of the MATLAB Runtime on the
same machine is not supported on Mac OS X. When you receive a new version of
MATLAB, you must recompile and redeploy all your applications and components. Also,
when you install a new MATLAB Runtime on a target machine, you must delete the old
version of the MATLAB Runtime and install the new one. You can have only one version of
the MATLAB Runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler
Loading networks saved from older Deep Learning Toolbox versions requires some
initialization routines that are not deployable. Therefore, these networks cannot be
deployed without first being updated.

For example, deploying with Deep Learning Toolbox Version 5.0.1 (2006b) and MATLAB
Compiler Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
 function "initwb".
Error in ==> updatenet at 40
Error in ==> network.loadobj at 10

??? Undefined function or method 'sim' for input
arguments of type 'struct'.
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in
Packaged Mode
In compiled mode, only one argument can be present in a call to the MATLAB printdlg
function (for example, printdlg(gcf)).

You cannot receive an error when making at call to printdlg with multiple arguments.
However, when an application containing the multiple-argument call is packaged, the
action fails with the following error message:

13 Limitations and Restrictions

13-6

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

Packaging a Function with which Does Not Search Current
Working Folder
Using which, as in this example, does not cause the current working folder to be
searched in deployed applications. In addition, it may cause unpredictable behavior of the
open function.

function pathtest
which myFile.mat
open('myFile.mat')

Use one of the following solutions as an alternative:

• Use the pwd function to explicitly point to the file in the current folder, as follows:

open([pwd '/myFile.mat'])

• Rather than using the general open function, use load or other specialized functions
for your particular file type, as load explicitly checks for the file in the current folder.
For example:

load myFile.mat

• Include your file in the Files required for your application to run area of the
Compiler app or the -a flag using mcc.

Restrictions on Using C++ SETDATA to Dynamically Resize an
mwArray
You cannot use the C++ SETDATA function to dynamically resize mwArrays.

For instance, if you are working with the following array:

[1 2 3 4]

you cannot use SETDATA to increase the size of the array to a length of five elements.

 Limitations

13-7

See Also

More About
• “Functions not supported by MATLAB Compiler / MATLAB Compiler SDK” on page

13-9

13 Limitations and Restrictions

13-8

Functions not supported by MATLAB Compiler / MATLAB
Compiler SDK

Note Due to the number of active and ever-changing list of MathWorks products and
functions, this is not a complete list of functions that cannot be compiled. If you have a
question as to whether a specific MathWorks product's function is able to be compiled or
not, the definitive source is that product's documentation. For an updated list of such
functions, see Support for MATLAB and Toolboxes.

Functions that cannot be compiled fall into the following categories:

• Functions that print or report MATLAB code from a function, for example, the
MATLAB help function or debug functions, do not work.

• Simulink functions, in general, do not work.
• Functions that require a command line, for example, the MATLAB lookfor function,

do not work.
• clc, home, and savepath do not do anything in deployed mode.
• Only certain tools that allow run-time manipulation of figures are supported, for

example, adding legends, selecting data points, zooming in and out, etc.

Returned values from standalone applications are 0 for successful completion or a
nonzero value otherwise.

In addition, there are functions and programs that have been identified as nondeployable
due to licensing restrictions.

mccExcludedFiles.log lists all the functions and files excluded by mcc if they cannot
be compiled. It is created after each attempted build if there are functions or files that
cannot be compiled.

 Functions not supported by MATLAB Compiler / MATLAB Compiler SDK

13-9

https://www.mathworks.com/products/compiler/supported/compiler_support.html

List of Unsupported Functions and Programs

add_block
add_line
checkcode
close_system
colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromWsdl
dbclear
dbcont
dbdown
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
delete_block
delete_line
depfun
doc
echo
edit
fields
figure_palette
get_param
help
home

13 Limitations and Restrictions

13-10

inmem
keyboard
linkdata
linmod
matlab.unittest.TestSuite.fromProject
mislocked
mlock
more
munlock
new_system
open_system
pack
pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
rehash
restoredefaultpath
run
segment
set_param
sim
sldebug
type

 Functions not supported by MATLAB Compiler / MATLAB Compiler SDK

13-11

Reference Information

• “MATLAB Runtime Path Settings for Run-Time Deployment” on page 14-2
• “MATLAB Compiler Licensing” on page 14-4
• “Deployment Product Terms” on page 14-6

14

MATLAB Runtime Path Settings for Run-Time
Deployment

In this section...
“General Path Guidelines” on page 14-2
“Path for Java Applications on All Platforms” on page 14-2
“Windows Path for Run-Time Deployment” on page 14-2
“Linux Paths for Run-Time Deployment” on page 14-3
“OS X Paths for Run-Time Deployment” on page 14-3

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to placing
specific folders on the path:

• Always avoid including arch on the path. Failure to do so may inhibit ability to run
multiple MATLAB Runtime instances.

• Ideally, set the environment in a separate shell script to avoid run-time errors caused
by path-related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled MATLAB code, you must instruct
them to set the path so that the system can find the MATLAB Runtime.

Note When you deploy a Java application to end users, they must set the class path on
the target machine.

The system needs to find .jar files containing the MATLAB libraries. To tell the system
how to locate the .jar files it needs, specify a classpath either in the javac command
or in your system environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

14 Reference Information

14-2

mcr_root\version\runtime\win64

mcr_root refers to the complete path where the MATLAB Runtime library archive files
are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install the MATLAB
Runtime.

Note If you are running the MATLAB Runtime installer on a shared folder, be aware that
other users of the share may need to alter their system configuration.

Linux Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv LD_LIBRARY_PATH
 mcr_root/version/runtime/glnxa64:
 mcr_root/version/bin/glnxa64:
 mcr_root/version/sys/os/glnxa64:
 mcr_root/version/sys/opengl/lib/glnxa64

OS X Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv DYLD_LIBRARY_PATH
 mcr_root/version/runtime/maci64:
 mcr_root/version/bin/maci64:
 mcr_root/version/sys/os/maci64

 MATLAB Runtime Path Settings for Run-Time Deployment

14-3

MATLAB Compiler Licensing

Using MATLAB Compiler Licenses for Development
You can run MATLAB Compiler from the MATLAB command prompt (MATLAB mode) or
the DOS/UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This has different behavior in MATLAB mode
and standalone mode.

Running MATLAB Compiler in MATLAB Mode

When you run MATLAB Compiler from “inside” of the MATLAB environment, that is, you
run mcc from the MATLAB command prompt, you hold the MATLAB Compiler license as
long as MATLAB remains open. To give up the MATLAB Compiler license, exit MATLAB.

Running MATLAB Compiler in Standalone Mode

If you run MATLAB Compiler from a DOS or UNIX prompt, you are running from
“outside” of MATLAB. In this case, MATLAB Compiler

• Does not require MATLAB to be running on the system where MATLAB Compiler is
running

• Gives the user a dedicated 30-minute time allotment during which the user has
complete ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute time period as
the sole owner of the MATLAB Compiler license. Anytime during the 30-minute segment,
if the same user requests MATLAB Compiler , the user gets a new 30-minute allotment.
When the 30-minute interval has elapsed, if a different user requests MATLAB Compiler ,
the new user gets the next 30-minute interval.

When a user requests MATLAB Compiler and a license is not available, the user receives
the message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are available,
the user gets the license and no message is displayed. The best way to guarantee that all

14 Reference Information

14-4

MATLAB Compiler users have constant access to MATLAB Compiler is to have an
adequate supply of licenses for your users.

 MATLAB Compiler Licensing

14-5

Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively
integrated into a Microsoft Excel application. Add-ins are front-ends for COM
components, usually written in some form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that is
used to develop software applications. Typically an API is used to provide access to
specific functionality. See MWArray.

Application — An end user-system into which a deployed functions or solution is
ultimately integrated. Typically, the end goal for the deployment customer is integration
of a deployed MATLAB function into a larger enterprise environment application. The
deployment products prepare the MATLAB function for integration by wrapping MATLAB
code with enterprise-compatible source code, such as C, C++, C# (.NET), F#, and Java
code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented
languages, that is a prototype for an object in an object-oriented language. It is analogous
to a derived type in a procedural language. A class is a set of objects which share a
common structure and behavior. Classes relate in a class hierarchy. One class is a
specialization (a subclass) of another (one of its superclasses) or comprises other classes.
Some classes use other classes in a client-server relationship. Abstract classes have no
members, and concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code
involves generating a binary that wraps around MATLAB code, enabling it to execute in
various computing environments. For example, when MATLAB code is compiled into a

14 Reference Information

14-6

Java package, a Java wrapper provides Java code that enables the MATLAB code to
execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a
Microsoft Excel add-in. In MATLAB Compiler SDK, an executable component, to be
integrated with Microsoft COM applications.

Console application — Any application that is executed from a system command prompt
window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB
deployment customer is using type-safe interfaces, data marshaling—as from
mathematical data types to MathWorks data types such as represented by the MWArray
API—must be performed manually, often at great cost.

Deploy — The act of integrating MATLAB code into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary
generated by MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable
package. All MATLAB-based content in the deployable archive uses the Advanced
Encryption Standard (AES) cryptosystem. See “Additional Details” on page 5-8.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for
Windows. Using DLLs is much preferred over the previous technology of static (or non-
dynamic) libraries, which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and
sometimes called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold
data. Properties allow users to access class variables as if they were accessing member
fields directly, while actually implementing that access through a class method.

 Deployment Product Terms

14-7

I

Integration — Combining deployed MATLAB code's functionality with functionality that
currently exists in an enterprise application. For example, a customer creates a
mathematical model to forecast trends in certain commodities markets. In order to use
this model in a larger-scale financial application (one written with the Microsoft .NET
Framework, for instance) the deployed financial model must be integrated with existing
C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server
software, see MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many
files into one. Software developers use JARs to distribute Java applications or libraries, in
the form of classes and associated metadata and resources (text, images, etc.). Computer
users can create or extract JAR files using the jar command that comes with a Java
Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into
MATLAB software.

JDK — The Java Development Kit is a free Oracle® product which provides the
environment required for programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required
to run Java programs. It comprises the Java Virtual Machine, the Java platform core
classes, and supporting files. It does not include the compiler, debugger, or other tools
present in the JDK™. The JRE™ is the smallest set of executables and files that constitute
the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when
added vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB
uses these libraries to enable the execution of MATLAB files on systems without an
installed version of MATLAB.

14 Reference Information

14-8

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production
Server software, you have the option of specifying more than one MATLAB Runtime
session, using the --num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients
are applications written in a language supported by MATLAB Production Server that call
deployed functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production
Server containing at least one server and one client. Each configuration of the software
usually contains a unique set of values in the server configuration file, main_config
(MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created
using the mps-new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB
programs within your production systems, enabling you to incorporate numerical
analytics in enterprise applications. When you use this software, web, database, and
enterprise applications connect to MATLAB programs running on MATLAB Production
Server via a lightweight client library, isolating the MATLAB programs from your
production system. MATLAB Production Server software consists of one or more servers
and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source
files into standalone applications or shared libraries. For more information, see the
mbuild function reference page.

mcc — The MATLAB command that invokes the compiler. It is the command-line
equivalent of using the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative
information to a .NET class. For example, in the context of client programming with
MATLAB Production Server software, you specify method attributes to define MATLAB
structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of
standard mathematical data types.

 Deployment Product Terms

14-9

MWArray interface — A proxy to mxArray. An application program interface (API) for
exchanging data between your application and MATLAB. Using MWArray, you marshal
data from traditional mathematical types to a form that can be processed and understood
by MATLAB data type mxArray. There are different implementations of the MWArray
proxy for each application programming language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB
Runtime and other files, into an installer that can be distributed to others. The compiler
apps place the installer in the for_redistribution subfolder. In addition to the
installer, the compiler apps generate a number of lose artifacts that can be used for
testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production
Server software. Servers created with the software do not allocate a unique thread to
each client connection. Rather, when data is available on a connection, the required
processing is scheduled on a pool, or group, of available threads. The server configuration
file option --num-threads sets the size of that pool (the number of available request-
processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error
messages relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are
written to automate repetitive operations through computer processing. Enterprise
system applications usually consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface
to something else. For example, MWArray is a proxy for programmers who need to access
the underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast
loading into Windows applications. Dynamic-link libraries (DLLs) are Microsoft's
implementation of the shared library concept for Microsoft Windows.

14 Reference Information

14-10

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create
a shared MATLAB Runtime instance, also known as a singleton. When you invoke
MATLAB Compiler with the -S option through the compiler (using either mcc or a
compiler app), a single MATLAB Runtime instance is created for each COM component or
Java package in an application. You reuse this instance by sharing it among all
subsequent class instances. Such sharing results in more efficient memory usage and
eliminates the MATLAB Runtime startup cost in each subsequent class instantiation. All
class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET
assemblies. MATLAB Compiler creates singletons by default for the COM components
used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions
often carry state in the form of variable values. The MATLAB workspace itself also
maintains information about global variables and path settings. When deploying functions
that carry state, you must often take additional steps to ensure state retention when
deploying applications that use such functions.

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access
using textual field designators. Fields are data containers that store data of a specific
MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as
Microsoft Visual Studio®.

T

Thread — A portion of a program that can run independently of and concurrently with
other portions of the program. See pool for additional information on managing the
number of processing threads available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the
MWArray type from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag
libraries, and static web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web.
Using the WebFigures feature, you display MATLAB figures on a website for graphical

 Deployment Product Terms

14-11

manipulation by end users. This enables them to use their graphical applications from
anywhere on the web, without the need to download MATLAB or other tools that can
consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication
Foundation™ is an application programming interface in the .NET Framework for
building connected, service-oriented, web-centric applications. WCF is designed in
accordance with service oriented architecture principles to support distributed computing
where services are consumed by client applications.

14 Reference Information

14-12

Functions — Alphabetical List

15

%#function
Pragma to help MATLAB Compiler locate functions called through feval, eval, Handle
Graphics callback, or objects loaded from MAT-files

Syntax
%#function function1 [function2 ... functionN]

%#function object_constructor

Description
The %#function pragma informs MATLAB Compiler that the specified function(s) will be
called through an feval, eval,Handle Graphics® callback, or objects loaded from MAT-
files.

Use the %#function pragma in standalone applications to inform MATLAB Compiler that
the specified function(s) should be included in the compilation, whether or not MATLAB
Compiler's dependency analysis detects the function(s). It is also possible to include
objects by specifying the object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and
compile all MATLAB files used in your application. This pragma adds the top-level
function as well as all the local functions in the file to the compilation.

Examples
Example 1
 function foo
 %#function bar

 feval('bar');

 end %function foo

15 Functions — Alphabetical List

15-2

By implementing this example, MATLAB Compiler is notified that function bar will be
included in the compilation and is called through feval.

Example 2
function foo
 %#function bar foobar

 feval('bar');
 feval('foobar');

 end %function foo

In this example, multiple functions (bar and foobar) are included in the compilation and
are called through feval.

Example 3
function foo
 %#function ClassificationSVM

 load('svm-classifier.mat');
 num_dimensions = size(svm_model.PredictorNames, 2);

 end %function foo

In this example, an object from the class ClassificationSVM is loaded from a MAT-file.
For more information, see “MATLAB Data Files in Compiled Applications”.

Introduced before R2006a

 %#function

15-3

applicationCompiler
Build and package functions into standalone applications

Syntax
applicationCompiler
applicationCompiler project_name
applicationCompiler -build project_name
applicationCompiler -package project_name

Description
applicationCompiler opens the MATLAB standalone compiler for the creation of a
new compiler project. For more information on the Application Compiler app, see
Application Compiler.

applicationCompiler project_name opens the MATLAB standalone compiler app
with the project preloaded.

applicationCompiler -build project_name runs the MATLAB standalone
compiler to build the specified project. The installer is not generated.

applicationCompiler -package project_name runs the MATLAB standalone
compiler to build and package the specified project. The installer is generated.

Examples

Create a New Standalone Application Project

Open the application compiler to create a new project.

applicationCompiler

15 Functions — Alphabetical List

15-4

Package a Standalone Application using an Existing Project

Open the application compiler to build a new application using an existing project.

applicationCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved MATLAB Compiler project. The project must be on
the current path.

See Also
deploytool | mcc

Introduced in R2013b

 applicationCompiler

15-5

ctfroot
Location of files related to deployed application

Syntax
root = ctfroot

Description
root = ctfroot returns the name of the folder where the deployable archive for the
application is expanded.

Use this function to access any file that the user would have included in their project
(excluding the ones in the packaging folder).

Examples

Determine location of deployable archive
appRoot = ctfroot;

Output Arguments
root — Path to expanded deployable archive
character vector

Path to expanded deployable archive returned as a character vector in the form:
application_name_mcr. .

Introduced in R2006a

15 Functions — Alphabetical List

15-6

deploytool
Compile and package functions for external deployment

Syntax
deploytool
deploytool project_name
deploytool -build project_name
deploytool -package project_name

Description
deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project
preloaded.

deploytool -build project_name runs the appropriate compiler app to build the
specified project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

 deploytool

15-7

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

deploytool -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of the project to be compiled, specified as a character array or string.The project
must be on the current path.

Introduced in R2006b

15 Functions — Alphabetical List

15-8

getmcruserdata
Retrieve MATLAB array value associated with a given key

Syntax
value = getmcruserdata(key)

Description
value = getmcruserdata(key) returns MATLAB data associated with the string key
in the current MATLAB Runtime instance. If there is no data associated with the key, it
returns an empty matrix.

This function is part of the MATLAB Runtime User Data interface API. It is available both
in MATLAB and in deployed applications created with MATLAB Compiler and MATLAB
Compiler SDK.

Examples
Get the magic square data associated with the string 'magic' in the current instance of
the MATLAB Runtime.

value = magic(3);
setmcruserdata('magic', value);
getmcruserdata('magic')

ans =
 8 1 6
 3 5 7
 4 9 2

 getmcruserdata

15-9

Input Arguments
key — Key associated with MATLAB data
string

key is the MATLAB string with which MATLAB data value is associated within the
current instance of the MATLAB Runtime.

Output Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

value is the MATLAB data associated with input string key for the current instance of
the MATLAB Runtime.

See Also
setmcruserdata

Introduced in R2008b

15 Functions — Alphabetical List

15-10

isdeployed
Determine whether code is running in deployed or MATLAB mode

Syntax
x = isdeployed

Description
x = isdeployed returns true (1) when the function is running in deployed mode and
false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the application with MATLAB
Compiler, the function will return true when the application is run in deployed mode. If
you run the application containing this function in a MATLAB session, the function will
return false.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX and SIM targets
• Returns false for other targets

Introduced before R2006a

 isdeployed

15-11

ismcc
Test if code is running during compilation process (using mcc)

Syntax
x = ismcc

Description
x = ismcc returns true when the function is being executed by mcc dependency checker
and false otherwise.

When this function is executed by the compilation process started by mcc, it will return
true. This function will return false when executed within MATLAB as well as in deployed
mode. To test for deployed mode execution, use isdeployed. This function should be
used to guard code in matlabrc, or hgrc (or any function called within them, for
example startup.m in the example on this page), from being executed by MATLAB
Compiler (mcc) or any of the MATLAB Compiler SDK targets.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be
guarded from executing using ismcc during the compilation process and isdeployed
for the deployed application as shown in the example on this page.

Examples
`% startup.m
 if ~(ismcc || isdeployed)
 addpath(fullfile(matlabroot,'work'));
 end

15 Functions — Alphabetical List

15-12

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

See Also
isdeployed | mcc

Introduced in R2008b

 ismcc

15-13

libraryCompiler
Build and package functions for use in external applications

Syntax
libraryCompiler
libraryCompiler project_name
libraryCompiler -build project_name
libraryCompiler -package project_name

Description
libraryCompiler opens the Library Compiler app for the creation of a new compiler
project

libraryCompiler project_name opens the Library Compiler app with the project
preloaded.

libraryCompiler -build project_name runs the Library Compiler app to build the
specified project. The installer is not generated.

libraryCompiler -package project_name runs the Library Compiler app to build
and package the specified project. The installer is generated.

Examples

Create a New Project

Open the Library Compiler app to create a new project.

libraryCompiler

15 Functions — Alphabetical List

15-14

Package a Function using an Existing Project

Open the Library Compiler app using an existing project.

libraryCompiler -package my_magic

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2013b

 libraryCompiler

15-15

mcc
Compile MATLAB functions for deployment

Syntax
mcc options mfilename1 mfilename2...mfilenameN

mcc -m options mfilename
mcc -e options mfilename

mcc -W 'excel:addin_name,className,version' -T link:lib options
mfilename1 mfilename2...mfilenameN

mcc -H -W hadoop:archiveName,CONFIG:configFile

Description
mcc options mfilename1 mfilename2...mfilenameN compiles the functions as
specified by the options.

The options used depend on the intended results of the compilation. For information on
compiling:

• C/C++ shared libraries, .NET assemblies, Java packages, or Python packages see mcc
for MATLAB Compiler SDK

• MATLAB Production Server deployable archives or Excel add-ins for MATLAB
Production Server see mcc for MATLAB Compiler SDK

mcc -m options mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e options mfilename compiles the function into a standalone application that
does not open an MS-DOS® command window.

This syntax is equivalent to -W WinMain -T link:exe.

15 Functions — Alphabetical List

15-16

mcc -W 'excel:addin_name,className,version' -T link:lib options
mfilename1 mfilename2...mfilenameN creates a Microsoft Excel add-in from the
specified files.

• addin_name — Specifies the name of the addin and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default. If specified, className, needs
to be different from mfilename.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

Note Excel add-ins can be created only in MATLAB running on Windows.

Note Remove the single quotes around
'excel:addin_name,className,version' when executing the mcc command
from a DOS prompt.

mcc -H -W hadoop:archiveName,CONFIG:configFile generates a deployable
archive that can be run as a job by Hadoop.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the configuration file for creating a deployable

archive. For more information, see “Configuration File for Creating Deployable
Archive Using the mcc Command”.

Tip You can issue the mcc command either at the MATLAB command prompt or the DOS
or UNIX command line.

 mcc

15-17

Examples

Compile a standalone application
mcc -m magic.m

Compile a standalone Windows application
Compile a standalone application that does not open a command prompt on Windows.

mcc -e magic.m

Compile an Excel add-in
mcc -W 'excel:myAddin,myClass,1.0' -T link:lib magic.m

Input Arguments
mfilename — File to be compiled
filename

File to be compiled, specified as a character vector or string scalar.

mfilename1 mfilename2...mfilenameN — Files to be compiled
list of filenames

One or more files to be compiled, specified as a space-separated list of filenames.

options — Options for customizing the output
-a | -b | -B | -C | -d | -f | -g | -G | -I | -K | -m | -M | -n | -N | -o | -p | -R | -S | -T | -u | -U | -v | -w |
-W | -Y

Options for customizing the output, specified as a list of character vectors or string
scalars.

• -a

Add files to the deployable archive using -a path to specify the files to be added.
Multiple -a options are permitted.

15 Functions — Alphabetical List

15-18

If a file name is specified with -a, the compiler looks for these files on the MATLAB
path, so specifying the full path name is optional. These files are not passed to
mbuild, so you can include files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example,

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to the
deployable archive. The folder subtree in testdir is preserved in the deployable
archive.

If the filename includes a wildcard pattern, only the files in the folder that match the
pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example,

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

Note * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path at
the time of compilation, a path entry is added to the application's run-time path so that
they appear on the path when the deployed code executes.

When you use the -a option to specify a full path to a resource, the basic path is
preserved, with some modifications, but relative to a subdirectory of the runtime
cache directory, not to the user's local folder. The cache directory is created from the
deployable archive the first time the application is executed. You can use the
isdeployed function to determine whether the application is being run in deployed
mode, and adjust the path accordingly. The -a option also creates a .auth file for
authorization purposes.

 mcc

15-19

Caution If you use the -a flag to include a file that is not on the MATLAB path, the
folder containing the file is added to the MATLAB dependency analysis path. As a
result, other files from that folder might be included in the compiled application.

Note If you use the -a flag to include custom Java classes, standalone applications
work without any need to change the classpath as long as the Java class is not a
member of a package. The same applies for JAR files. However, if the class being
added is a member of a package, the MATLAB code needs to make an appropriate call
to javaaddpath to update the classpath with the parent folder of the package.

• -b

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell
formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and
corresponding arguments and/or other file names. The file might contain other -B
options. A bundle can include replacement parameters for compiler options that
accept names and version numbers. See “Using Bundles to Build MATLAB Code”
(MATLAB Compiler SDK).

• -C

Do not embed the deployable archive in binaries.

Note The -C flag is ignored for Java libraries.
• -d

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

15 Functions — Alphabetical List

15-20

• -f

Override the default options file with the specified options file. It specifically applies to
the C/C++ shared libraries, COM, and Excel targets. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use
different ANSI compilers for different invocations of the compiler. This option is a
direct pass-through to mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler SDK. It also causes mbuild to pass appropriate debugging flags to the
system C/C++ compiler. The debug option lets you backtrace up to the point where
you can identify if the failure occurred in the initialization of MATLAB Runtime, the
function call, or the termination routine. This option does not let you debug your
MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option appends the
folder to the end of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files,
followed by directory2. This option is important for standalone compilation where
the MATLAB path is not available.

If used in conjunction with the -N option, the -I option adds the folder to the
compilation path in the same position where it appeared in the MATLAB path rather
than at the head of the path.

• -K

Direct mcc to not delete output files if the compilation ends prematurely due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

• -m

Direct mcc to generate a standalone application.

 mcc

15-21

• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This option provides a useful mechanism for
defining compile-time options, for example, -M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M option is used.
• -n

The -n option automatically identifies numeric command line inputs and treats them
as MATLAB doubles.

• -N

Passing -N clears the path of all folders except the following core folders (this list is
subject to change over time):

• matlabroot\toolbox\matlab
• matlabroot\toolbox\local
• matlabroot\toolbox\compiler
• matlabroot\toolbox\shared\bigdata

Passing -N also retains all subfolders in this list that appear on the MATLAB path at
compile time. Including -N on the command line lets you replace folders from the
original path, while retaining the relative ordering of the included folders. All
subfolders of the included folders that appear on the original path are also included. In
addition, the -N option retains all folders that you included on the path that are not
under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is
placed at the head of the compilation path. Use the –p option to conditionally include
folders and their subfolders; if they are present in the MATLAB path, they appear in
the compilation path in the same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

15 Functions — Alphabetical List

15-22

to name the final executable output of MATLAB Compiler. A suitable platform-
dependent extension is added to the specified name (for example, .exe for Windows
standalone applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under
matlabroot\toolbox to the compilation MATLAB path. The files are added in the
same order in which they appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path,
it is assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and
all its subfolders that appear on the original path are added to the compilation path
in the same order.

• If a folder is included with -p that is not on the original MATLAB path, that folder
is ignored. (You can use -I to force its inclusion.)

• -R

Provide MATLAB Runtime options. This option is relevant only when building
standalone applications using MATLAB Compiler. The syntax is as follows:

-R option

Option Description Target
-
logfile
,filena
me

Specify a log file name. MATLAB Compiler

-
nodispl
ay

Suppress the MATLAB nodisplay run-
time warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine
(JVM).

MATLAB Compiler

-
startms
g

Customizable user message displayed at
initialization time.

MATLAB Compiler
Standalone Applications

 mcc

15-23

Option Description Target
-
complet
emsg

Customizable user message displayed
when initialization is complete.

MATLAB Compiler
Standalone Applications

Caution When running on Mac OS X, if you use -nodisplay as one of the options
included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Note If you specify the -R option for libraries created from MATLAB Compiler SDK,
mcc still compiles without errors and generates the results. But the -R option doesn't
apply to these libraries and does not do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets
its own MATLAB Runtime context. The context includes a global MATLAB workspace
for variables, such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context.
This ensures that changes made to the global or base workspace in one instance of the
class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If multiple
instances of a class are created, they use the context created by the first instance
which saves startup time and some resources. However, any changes made to the
global workspace or the base workspace by one instance impacts all class instances.
For example, if instance1 creates a global variable A in a singleton MATLAB
Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these
specific targets:

Target supported by Singleton MATLAB
Runtime

Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

15 Functions — Alphabetical List

15-24

Target supported by Singleton MATLAB
Runtime

Create a Singleton MATLAB Runtime by....

.NET assembly Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

COM component • Using the Library Compiler app, click
Settings and add -S to the Additional
parameters passed to MCC field.

• Using mcc, pass the -S flag.

Java package

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description
compile:exe Generate a C/C++ wrapper file, and

compile C/C++ files to an object form
suitable for linking into a standalone
application.

compile:lib Generate a C/C++ wrapper file, and
compile C/C++ files to an object form
suitable for linking into a shared library
or DLL.

link:exe Same as compile:exe and also link
object files into a standalone
application.

link:lib Same as compile:lib and also link
object files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The
argument applies only to the generic COM component and Microsoft Excel add-in
targets.

• -U

Build deployable archive (.ctf file) for MATLAB Production Server.

 mcc

15-25

• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.
• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description
-w list List all of the possible warnings that mcc can

generate.
-w enable Enable all warnings.
-w disable[:<string>] Disable specific warnings associated with

<string>. Omit the optional <string> to apply
the disable action to all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. Omit the optional <string> to apply
the enable action to all warnings.

-w error[:<string>] Treat specific warnings associated with <string>
as an error. Omit the optional <string> to apply
the error action to all warnings.

-w off[:<string>]
[<filename>]

Turn off warnings for specific error messages
defined by <string>. You can also narrow the
scope by specifying warnings be turned off when
generated by specific <filename>s.

15 Functions — Alphabetical List

15-26

Syntax Description
-w on[:<string>]
[<filename>]

Turn warnings on for specific error messages
defined by <string>. You can also narrow scope
by specifying warnings be turned on when
generated by specific <filename>s.

You can also turn warnings on or off in your MATLAB code.

For example, to turn off warnings for deployed applications (specified using
isdeployed) in startup.m, you write:

if isdeployed
 warning off
end

To turn on warnings for deployed applications, you write:

if isdeployed
 warning on
end

• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files
generated by the compiler. You provide a list of functions, and the compiler generates
the wrapper functions and any appropriate global variable definitions.

• -Y Use

 -Y license.lic

to override the default license file with the specified argument.

Note The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

 mcc

15-27

See Also
Introduced before R2006a

15 Functions — Alphabetical List

15-28

mcrinstaller
Display version and location information for MATLAB Runtime installer corresponding to
current platform

Syntax
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller;

Description
Displays information about available MATLAB Runtime installers using the format:
[INSTALLER_PATH, MAJOR, MINOR, PLATFORM] = mcrinstaller; where:

• INSTALLER_PATH is the full path to the installer for the current platform.
• MAJOR is the major version number of the installer.
• MINOR is the minor version number of the installer.
• PLATFORM is the name of the current platform (returned by COMPUTER(arch)).

If no MATLAB Runtime installer is found, you are prompted to download an installer using
the command compiler.runtime.download.

Note You must distribute the MATLAB Runtime library to your end users to enable them
to run applications developed with MATLAB Compiler or MATLAB Compiler SDK.

See “Install and Configure the MATLAB Runtime” (MATLAB Compiler SDK)for more
information about the MATLAB Runtime installer.

 mcrinstaller

15-29

Examples

Find MATLAB Runtime Installer Location
Display the location of MATLAB Runtime installers for a particular platform. This example
shows output for a win64 system. The release number is called R20xxx indicating the
release for which the MATLAB Runtime installer has been downloaded.

mcrinstaller

C:\Program Files\MATLAB\R20xxx\toolbox\compiler\deploy\win64\MCR_R20xxx_win64_installer.exe

For example, for R2018b, the path would be:

C:\Program Files\MATLAB\R2018b\toolbox\compiler\deploy\win64\MCR_R2018b_win64_installer.exe

Introduced in R2009a

15 Functions — Alphabetical List

15-30

mcrversion
Determine version of installed MATLAB Runtime

Syntax
[major, minor] = mcrversion;

Description
The MATLAB Runtime version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable: [major, minor] =
mcrversion; Major and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more
outputs, as follows:

[major, minor, point] = mcrversion;

At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples
mcrversion
ans =
 7

Introduced in R2008a

 mcrversion

15-31

setmcruserdata
Associate MATLAB data value with a key

Syntax
void setmcruserdata(key, value)

Description
void setmcruserdata(key, value) associates the MATLAB data value with the
string key in the current MATLAB Runtime instance. If there is already a value
associated with the key, it is overwritten.

This function is part of the MATLAB Runtime User Data interface API. It is available both
in MATLAB and in deployed applications created with MATLAB Compiler and MATLAB
Compiler SDK.

Examples
Store a cell array and associate it with the string 'PI_Data' in the current instance of
the MATLAB Runtime.

value = {3.14159, 'March 14th is PI day'};
setmcruserdata('PI_Data', value);

Input Arguments
value — Value of MATLAB data
any MATLAB data type including matrices, cell arrays, and Java objects

Value is the MATLAB data associated with input string key for the current instance of
the MATLAB Runtime.

15 Functions — Alphabetical List

15-32

key — Key associated with MATLAB data
string

key is a MATLAB string with which MATLAB data value is associated within the current
instance of the MATLAB Runtime.

See Also
getmcruserdata

Introduced in R2008a

 setmcruserdata

15-33

compiler.runtime.download
Download MATLAB Runtime installer

Syntax
compiler.runtime.download

Description
compiler.runtime.download downloads the latest version of the MATLAB Runtime
installer and specifies its location. If the installer has already been downloaded to the
machine, it returns a message stating that the MATLAB Runtime installer exists and
specifies its location.

Examples

Download the MATLAB Runtime Installer

compiler.runtime.download

Downloading MATLAB Runtime installer. It may take several minutes...

MATLAB Runtime installer has been downloaded to:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.4\MCR_R2018a_win64_installer.exe"

Location of MATLAB Runtime Installer

If you already have downloaded the latest version of the MATLAB Runtime installer, this
command gives following result on Windows:

compiler.runtime.download

15 Functions — Alphabetical List

15-34

An existing MATLAB Runtime installer was found at:
 "C:\Users\username\AppData\Local\Temp\username\MCRInstaller9.4\MCR_R2018a_win64_installer.exe"

See Also
mcrinstaller | mcrversion

Introduced in R2018a

 compiler.runtime.download

15-35

MATLAB Compiler Quick Reference

A

mcc Command Arguments Listed Alphabetically
Option Description Comment
-a path Add path to the deployable

archive.
If a folder name is specified, all files in
the folder are added. If a wildcard is used
all files matching the wildcard are added.

-b Generate Excel compatible
formula function.

Requires MATLAB Compiler for Excel
add-ins

-B
filename[:arg[,arg]
]

Replace -B filename on the
mcc command line with the
contents of filename.

The file should contain only mcc
command-line options. These are
MathWorks included options files:

• -B csharedlib:foo (C shared
library)

• -B cpplib:foo (C++ library)
-c Generate C wrapper code. Equivalent to -T codegen
-C Direct mcc to not embed the

deployable archive in
generated binaries.

-d directory Place output in specified
folder.

-e Suppresses appearance of the
MS-DOS Command Window
when generating a standalone
application.

Use -e in place of the -m option.
Available for Windows only. Use with -R
option to generate error logging.
Equivalent to -W WinMain -T
link:exe

The standalone app compiler suppresses
the MS-DOS command window by default.
To unsuppress it, unselect Do not
require Windows Command Shell
(console) for execution in the app’s
Additional Runtime Settings area.

-f filename Use the specified options file,
filename, when calling
mbuild.

mbuild -setup is recommended.

A mcc Command Arguments Listed Alphabetically

A-2

Option Description Comment
-g Generate debugging

information.
None

-G Same as -g None
-I directory Add folder to search path for

MATLAB files.

-K Directs mcc to not delete
output files if the compilation
ends prematurely, due to error.

mcc's default behavior is to dispose of any
partial output if the command fails to
execute successfully.

-l Macro to create a function
library.

Equivalent to -W lib -T link:lib

-m Macro to generate a
standalone application.

Equivalent to -W main -T link:exe

-M string Pass string to mbuild. Use to define compile-time options.
-N Clear the path of all but a

minimal, required set of
folders.

None

-o outputfile Specify name of final output
file.

Adds appropriate extension

-p directory Add directory to
compilation path in an order-
sensitive context.

Requires -N option

-R option Specify run-time options for
MATLAB Runtime.

option = -nojvm, -nodisplay, -
logfile filename, -startmsg, and -
completemsg filename

-S Create Singleton MATLAB
Runtime.

Default for generic COM components.
Valid for Microsoft Excel and Java
packages.

-T Specify the output target
phase and type.

Default is codegen.

-u Registers COM component for
current user only on
development machine

Valid only for generic COM components
and Microsoft Excel add-ins

 mcc Command Arguments Listed Alphabetically

A-3

Option Description Comment
-v Verbose; display compilation

steps.

-w option Display warning messages. option = list, level, or
level:string

where

level = disable, enable, error,
off:string, or on:string

-W type Control the generation of
function wrappers.

type = main cpplib:<string>
lib:<string> none
com:compname,clname,version

-Y licensefile Use licensefile when
checking out a MATLAB
Compiler license.

The -Y flag works only with the
command-line mode.

>>!mcc -m foo.m -Y license.lic

-? Display help message.

A mcc Command Arguments Listed Alphabetically

A-4

mcc Command Line Arguments Grouped by Task
COM Components

Option Description Comment
-u Registers COM component

for current user only on
development machine

Valid only for generic COM
components and Microsoft
Excel add-ins (requiring
MATLAB Compiler)

Deployable Archive

Option Description Comment
-a filename Add filename to the

deployable archive.
None

-C Directs mcc to not embed
the deployable archive in
C/C++ and main/Winmain
shared libraries and
standalone binaries by
default.

None

 mcc Command Line Arguments Grouped by Task

A-5

Debugging

Option Description Comment
-g Generate debugging

information.
None

-G Same as -g None
-K Directs mcc to not delete

output files if the
compilation ends
prematurely, due to error.

mcc's default behavior is to
dispose of any partial output
if the command fails to
execute successfully.

-v Verbose; display compilation
steps.

None

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,v
ersion

-? Display help message. None

Dependency Function Processing

Option Description Comment
-a filename Add filename to the

deployable archive.
None

Licenses

Option Description Comment
-Y licensefile Use licensefile when

checking out a MATLAB
Compiler license.

The -Y flag works only with
the command-line mode.

>>!mcc -m foo.m -Y license.lic

A mcc Command Line Arguments Grouped by Task

A-6

MATLAB Compiler for Excel Add-Ins

Option Description Comment
-b Generate Excel compatible

formula function.
Requires MATLAB Compiler

-u Registers COM component
for current user only on
development machine

Valid only for generic COM
components and Microsoft
Excel add-ins (requiring
MATLAB Compiler)

MATLAB Path

Option Description Comment
-I directory Add folder to search path

for MATLAB files.
MATLAB path is
automatically included when
running from MATLAB, but
not when running from a
DOS/UNIX shell.

-N Clear the path of all but a
minimal, required set of
folders.

None

-p directory Add directory to
compilation path in an
order-sensitive context.

Requires -N option

mbuild

Option Description Comment
-f filename Use the specified options

file, filename, when calling
mbuild.

mbuild -setup is
recommended.

-M string Pass string to mbuild. Use to define compile-time
options.

 mcc Command Line Arguments Grouped by Task

A-7

MATLAB Runtime

Option Description Comment
-R option Specify run-time options for

MATLAB Runtime.
option = -nojvm -
nodisplay-logfile
filename-startmsg -
completemsg filename

-S Create Singleton MATLAB
Runtime.

Default for generic COM
components. Valid for
Microsoft Excel and Java
packages.

Override Default Inputs

Option Description Comment
-B
filename[:arg[,arg]]

Replace -B filename on
the mcc command line with
the contents of filename
(bundle).

The file should contain only
mcc command-line options.
These are MathWorks
included options files:

• -B csharedlib:foo —
C shared library

• -B cpplib:foo — C++
library

A mcc Command Line Arguments Grouped by Task

A-8

Override Default Outputs

Option Description Comment
-d directory Place output in specified

folder.
None

-o outputfile Specify name of final output
file.

Adds appropriate extension

-e Suppresses appearance of
the MS-DOS Command
Window when generating a
standalone application.

Use -e in place of the -m
option. Available for
Windows only. Use with -R
option to generate error
logging. Equivalent to -W
WinMain -T link:exe

The standalone app
compiler suppresses the
MS-DOS command window
by default. To unsuppress it,
unselect Do not require
Windows Command Shell
(console) for execution in
the app’s Additional
Runtime Settings area.

Wrappers and Libraries

Option Description Comment
-c Generate C wrapper code. Equivalent to -T codegen
-l Macro to create a function

library.
Equivalent to -W lib -T
link:lib

-m Macro to generate a
standalone application.

Equivalent to -W main -T
link:exe

-W type Control the generation of
function wrappers.

type = main
cpplib:<string>
lib:<string> none
com:compname,clname,v
ersion

 mcc Command Line Arguments Grouped by Task

A-9

Accepted File Types
The valid and invalid file types are as follows:

Target
Application

Valid File Types Invalid File Types

Standalone
Application

MATLAB Mex files, MATLAB
scripts, and MATLAB functions.
These files must have a single entry
point.

MATLAB class files, PCode, Java
functions, COM or .NET
components, and data files

Library
Compiler

MATLAB Mex files and MATLAB
functions. These files must have a
single entry point.

MATLAB scripts, MATLAB class
files, PCode, Java functions, COM
or .NET components, and data files

MATLAB
Production
Server

MATLAB Mex files and MATLAB
functions. These files must have a
single entry point.

MATLAB scripts, MATLAB class
files, PCode, Java functions, COM
or .NET components, and data files

A Accepted File Types

A-10

Using MATLAB Compiler on Mac or
Linux

B

Problems Setting MATLAB Runtime Paths
In this section...
“Running SETENV on Mac Failed” on page B-2
“Mac Application Fails with “Library not loaded” or “Image not found”” on page B-2

When you build applications, associated shell scripts (run_application.sh) are
automatically generated in the same folder as your binary. By running these scripts, you
can conveniently set the path to your MATLAB Runtime location.

Running SETENV on Mac Failed
If the setenv command fails with a message similar to setenv: command not found
or setenv: not found, you are not using a C Shell command interpreter (such as csh
or tcsh).

Set the environment variables using the export command using the format export
my_variable=my_value.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH=mcr_root/v96/runtime/maci64:mcr_root/ ...

Mac Application Fails with “Library not loaded” or “Image not
found”
If you set your environment variables, you may still receive the following message when
you run your application:

dyld: Library not loaded: @rpath/libmwlaunchermain.dylib
Referenced from: /Applications/magicsquare/application/
magicsquare.app/Contents/MacOS/magicsquare
 Reason: image not found
Trace/BPT trap: 5

You may have set your environment variables initially, but they were not set up as
persistent variables. Do the following:

1 In your home directory, open a file such as .bashrc or .profile file in your log-in
shell.

B Problems Setting MATLAB Runtime Paths

B-2

2 In either of these types of log-in shell files, add commands to set your environment
variables so that they persist. For example, to set DYLD_LIBRARY_PATH in this
manner, you enter the following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=MCR_ROOT/v96/runtime/maci64:
MCR_ROOT/v96/sys/os/maci64:
MCR_ROOT/v96/bin/maci64
export DYLD_LIBRARY_PATH

?

Note The DYLD_LIBRARY_PATH= statement is one statement that must be entered
as a single line. The statement is shown on different lines, in this example, for
readability only.

 Problems Setting MATLAB Runtime Paths

B-3

Apps

16

Application Compiler
Package MATLAB programs for deployment as standalone applications

Description
The Application Compiler app packages MATLAB programs into applications that can
run outside of MATLAB.

Open the Application Compiler App
• MATLAB toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter applicationCompiler.

Examples
• “Create Standalone Application from MATLAB” on page 1-6

Parameters
main file — name of the function to package
character vector

Name of the function to package as a character vector. The selected function is the entry
point for the packaged application.

packaging options — method for installing the MATLAB Runtime with the
packaged application
MATLAB Runtime downloaded from web (default) | MATLAB Runtime included in package

You can decide whether to include the MATLAB Runtime fallback for MATLAB Runtime
installer in the generated application by selecting one of the two options in the
Packaging Options section. Including the MATLAB Runtime installer in the package
significantly increases the size of the package.

16 Apps

16-2

Runtime downloaded from web — Generates an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application.

Runtime included in package — Generates an installer that includes the MATLAB Runtime
installer.

The first time you select this option, you are prompted to download the MATLAB Runtime
installer or obtain a CD if you do not have internet access.

Files required for your application to run — files that must be included
with application
list of files

Files that must be included with application as a list of files.

Files installed for your end user — files installed on the end user's
machine when the application is installed
list of files

Optional files installed with application as a list of files.

Additional runtime settings — execution options for the application
check options

Check the appropriate boxes if you don't want a command window to show up during
execution or if you want a log file to be created.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

Testing Files — Folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

End User Files — Folder where files for building a custom installer are stored
character vector

 Application Compiler

16-3

Folder where files for building a custom installer are stored as a character vector.

Packaged Installers — Folder where generated installers are stored
character vector

Folder where generated installers are stored as a character vector.

Application information

Application Name — name of the installed application
character vector

Name of the installed application as a character vector.

For example, if the name is foo, the installed executable would be foo.exe, the start
menu entry would be foo. The folder created for the application would be InstallRoot/
foo.

The default value is the name of the first function listed in the Main File(s) field of the
app.

Version — version of the generated application
character vector

Version of the generated application as a character vector.

splash screen — image displayed on installer
image

Image displayed on installer as an image.

Author Name — name of the application author
character vector

Name of the application author as a character vector.

Email — Email address used to contact application support
character vector

Email address used to contact application support as a character vector.

Summary — brief description of application
character vector

16 Apps

16-4

Brief description of application as a character vector.

Description — detailed description of application
character vector

Detailed description of application as a character vector.

Additional installer options

Default installation folder — Folder where application is installed
character vector

Folder where the application is installed as a character vector.

Installation notes — notes about additional requirements for using
application
character vector

Notes about additional requirements for using application as a character vector.

Programmatic Use
applicationCompiler

See Also

Topics
“Create Standalone Application from MATLAB” on page 1-6

Introduced in R2013b

 Application Compiler

16-5

Hadoop Compiler
Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Description
The Hadoop Compiler app packages MATLAB map and reduce functions into a
deployable archive. You can incorporate the archive into a Hadoop mapreduce job by
passing it as a payload argument to job submitted to a Hadoop cluster.

Open the Hadoop Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app

icon.
• MATLAB command prompt: Enter hadoopCompiler.

Examples
• “Example Using the Hadoop Compiler App Workflow”

Parameters
map function — mapper file
character vector

Function for the mapper, specified as a character vector.

reduce function — reducer file
character vector

Function for the reducer, specified as a character vector.

datastore file — file containing a datastore representing the data to be
processed
character vector

16 Apps

16-6

A file containing a datastore representing the data to be processed, specified as a
character vector.

In most cases, you will start off by working on a small sample dataset residing on a local
machine that is representative of the actual dataset on the cluster. This sample dataset
has the same structure and variables as the actual dataset on the cluster. By creating a
datastore object to the dataset residing on your local machine you are taking a snapshot
of that structure. By having access to this datastore object, a Hadoop job executing on the
cluster will know how to access and process the actual dataset residing on HDFS™.

output types — format of output
keyvalue (default) | tabulartext

Format of output from Hadoop mapreduce job, specified as a keyvalue or tabular text.

additional configuration file content — additional parameters configuring
how Hadoop executes the job
character vector

Additional parameters to configure how Hadoop executes the job, specified as a character
vector. For more information, see “Configuration File for Creating Deployable Archive
Using the mcc Command”.

files required for your MapReduce job payload to run — files that must
be included with generated artifacts
list of files

Files that must be included with generated artifacts, specified as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character vector

Flags controlling the behavior of the compiler, specified as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored, specified as a character vector.

 Hadoop Compiler

16-7

packaged files — folder where generated artifacts are stored
character vector

Folder where generated artifacts are stored, specified as a character vector.

Programmatic Use
hadoopCompiler

See Also

Topics
“Example Using the Hadoop Compiler App Workflow”

Introduced in R2014b

16 Apps

16-8

